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Abstract 
We consider the problem of discriminating between patients with Ménière’s disease 
and healthy control subjects on the basis of stabilograms measured under different 
sensory conditions using our virtual reality posturography system. In it, virtual 
reality techniques provide visual stimulation and a tilting force platform provides 
mechanical perturbations. We computed a set 156 parameters from each subject’s 
measurements and selected a subset of these parameters for a simple 1 nearest 
neighbor classifier using the wrapper approach with the .632+-bootstrap error 
estimator. The results show that on the basis of the measurements we can obtain 
classification accuracy near 90%.  
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1. Introduction 

The central nervous system integrates sensory input and executes the constant corrective 
movements required for upright stance. Balance disorders, such as Ménière’s disease and 
benign positional vertigo, impair the postural control process. They are common among the 
elderly and increase the risk of falls. One standard approach to detect balance disorders is to 
observe subjects maintain balance under different sensory conditions. For example, 
increased reliance on vision is typical in balance disorders. In Romberg’s classical test, a 
test subject’s stability in quiet stance with eyes open is compared to stability in quiet stance 
with eyes closed. Posturography uses force platform measurements to study balance. The 
force platform measures forces occurring under the feet of a test subject standing on it. A 
triangular arrangement of three force transducers under the platform measures vertical 
forces that are usually converted to the center of pressure (COP) on the platform and the 
total vertical force (vertical ground reaction force, VGRF) acting on the platform. 
Intuitively, VGRF is the instantaneous weight on the platform. A stabilogram (Figure 1) 
presents the COP and VGRF as a function of time. It summarizes movements of the body 
and the signals seem to have little regularity, particularly in the case of no external 
stimulation. There is currently no widespread consensus on how to analyze the signals [1]. 
Researchers usually compute different measures of stability, such as mean velocity, from 
stabilograms to evaluate a test subject's performance; see [1] for a review. 
Our group works on a stimulation and measurement system for postural control and 

balance disorder research. We develop virtual reality (VR) techniques for visual stimuli and 
also use a mechanical tilting force platform for mechanical perturbations. Our system 
makes it easy to implement various tests to evaluate a test subject’s balance under external 
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stimulation. In the present study, we consider the detection of Ménière’s disease based on a 
comprehensive balance test. The test setup consists of a series of tests where a subject is 
exposed to different visual and mechanical stimuli. Ménière’s disease is difficult to detect 
as it is occurs in attacks and between the attacks the subject’s balance may be close to 
normal. The posturographic measurements are difficult to interpret and it is not clear how to 
integrate the results from individual tests. We resort to a brute-force approach to select 
suitable features for a simple 1 nearest neighbor (1NN) classifier. The initial set of features 
comes from different models and theories of postural control from the literature and our 
own analysis. Our goals are two-fold: We wish to estimate the performance of the test setup 
and also to improve our understanding on how differences between the two groups are 
reflected in the stabilograms. The biggest problem with this approach is the scarcity of data 
coupled with abundance of possible models. Feature subset selection optimizes the error 
estimate over a large set of models and may overfit and also the choice of best subset has 
quite a lot of uncertainty. Thus, the subset with lowest estimated error may generalize 
poorly. We try to reduce this problem by cross-validating the selection procedure and by 
selecting a suitably small number of variables.  
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Figure 1 - Stabilogram obtained from a Ménière patient in quiet standing with eyes open. 
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2. Materials and Methods 

We used data from 33 healthy control subjects (33 male, age mean 32.8, std. dev. 5.3 years) 
and 55 patients with Ménière's disease (19 male, 36 female, age mean 60.1, std. dev. 8.8 
years) measured at the balance laboratory of the Tampere University Central Hospital 
hearing center. The data includes results from 6 different tests: quiet standing eyes open and 
eyes closed (15 s each), cylinder stimulus (2 sections of 30 s each), moving platform (15 s), 
and tunnel (60 s). During measurement with external stimulation, a safety harness was used 
to prevent falling. The data set contained a total of 77 Ménière cases, but we discarded 
cases with missing data from being unable to complete some of the tests.The visual stimuli 
were administered using a Virtual Research V8 head-mounted display (HMD). In the 
cylinder stimulus, the subject is standing inside a rotating cylinder formed by colored dots. 
The cylinder first rotates in the counter-clockwise direction for 30 s and then after a pause 
of 10 s in the clockwise direction for 30 s. Both rotations start and stop gradually with 
constant angular acceleration. The directions (CW and CCW) are analyzed separately. The 
moving platform test tilts the platform randomly; the subject is wearing the HMD but no 
visual stimulus is present. In the tunnel test, the subject is moving in a twisting tunnel. The 
platform also tilts first following the tunnels and then in the middle of the test inverts phase. 
The virtual reality stimuli are treated in more detail in [2]. 
The stabilograms were sampled at 50 Hz with a resolution of 16 bits. They were filtered 

bidirectionally using a 2nd order Butterworth lowpass filter with a cutoff frequency of 10 Hz 
to remove noise. We computed a set of 156 real-valued parameters from each test subject's 
measurements. The parameters are mean velocity of COP on the platform (MV), 95% 
confidence ellipse area (CEA), low frequency band containing 90% of signal energy after 
DC-removal for each channel (FBX09, FBY09, FBM09), fraction of VGRF signal power 
below 1 Hz after DC-removal (VFPF1), parameters of lines fitted to result of cylinder 
measurement during 4 phases (slope, constant, and error of fit) and a set of 18 parameters 
per measurement from Collins and De Luca's diffusion analysis [3]. CEA and cylinder 
leaning are illustrated in Figure 2. The first three analysis methods are standard and the 
diffusion analysis is quite also quite popular. The CEA is computed by considering the 
COP points to be bivariate normally distributed; the computation of the ellipse was 
implemented using singular value decomposition. The FB09 and VGRF1 parameters were 
estimated using a simple periodogram power spectral density estimate. The VFPF1 
parameter is unique to our test. In the difficult tests, moving platform and tunnel, test 
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Figure 2-Examples of parameters. Left: Parameters of lines fitted to COP M/L-position 
during cylinder rotation. Right: 95% confidence ellipse during counter-clockwise rotation 
of cylinder. 
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subjects tend to lean on the safety harness which results in slow and large fluctuations of 
weight on the platform. The parameter attempts to quantify this effect. The lines fitted to 
cylinder measurements parameterize leaning caused by the rotation. Subjects tend to lean in 
the direction of rotation, which can be interpreted as compensating for illusory self-motion 
in the opposite direction. A baseline correction was used when fitting the lines; we used the 
mean COP position during 1 s before the rotation starts (separate baselines for both rotation 
directions). The most significantly differing parameters from the full data set are given in 
Table 1 (outliers were removed based on 1.5 times interquartile range above and below 
upper and lower quartile; the number of outliers is indicated in the table). Due to lack of 
space we omit the results for the rest of the parameters.  
The diffusion analysis considers COP movements a correlated random walk. The 

parameters are extracted from linear and log-log plots of mean squared displacements of 
COP in time. There are usually two scaling regions in the plots. They are thought to 
correspond to open-loop and closed-loop control. The 18 parameters are critical time ∆tx

 

and the displacement at the critical time ∆x2, scaling coefficients Dxs, Dxl, Hxs, Hxl for linear 
and log-log short and long time regions and the same for y and r; see [3] for details. We 
computed the parameters from single measurements whereas in [3] they were averaged from 
10 measurements. This probably affects the reliability of the results, but it would be 
impractical to repeat the whole test series 10 times for each test subject.  
We used the wrapper approach [4] for feature subset selection; an estimate of the resulting 

classifier's performance is used to select a subset of variables. Obviously an exhaustive 
search through all subsets of variables is intractable, so a heuristic method has to be used. 
We used sequential forward floating selection search (SFFS) [5]. SFFS starts with the empty 
set of variables. The best new variable is added to the current selection. After addition, the 
variable whose removal most improves performance is removed if it results in improves on 
the best subset found so far of the same size. Variable removal is repeated until no 
improvement can be attained. The process is repeated until the desired number of variables 
has been included. The final selection is the best subset found during the search. Different 
search strategies for variable subset selection are discussed in [6]. We used a simple 1NN 
classifier that standardizes the variables and uses the Euclidean metric. 

Table 1-Variables with most significant differences  
Test Param. Group N Out Mean Std Min Max 
Tunnel VFPF1 Control 33 1  0.41  0.18  0.11  0.84 
  Ménière 56 0  0.77  0.25  0.19  0.99 
Eyes Closed VFPF1 Control 33 5  0.01  0.01  0.01  0.02 
  Ménière 76 7  0.03  0.02  0.01  0.09 
Platform VFPF1 Control 33 0  0.46  0.18  0.07  0.79 
  Ménière 69 1  0.75  0.20  0.26  0.99 
Eyes Open VFPF1 Control 33 1  0.02  0.01  0.00  0.04 
  Ménière 76 4  0.04  0.02  0.01  0.09 
Eyes Closed Dys Control 33 2 18.29  9.58  4.27 41.26 
  Ménière 76 8 47.51 38.14  2.74 166.73 
Cyl. CW VFPF1 Control 33 0  0.35  0.23  0.02  0.83 
  Ménière 67 1  0.63  0.18  0.26  0.98 
Eyes Closed Drs Control 33 2 26.89 13.52  5.53 58.18 
  Ménière 76 10 62.31 46.55  4.61 225.00 
Eyes Closed ∆r2 Control 33 0 43.30 23.07  8.17 93.29 
  Ménière 76 8 133.88 126.13 11.14 550.79 
Cyl. CCW VFPF1 Control 33 0  0.35  0.22  0.02  0.79 
  Ménière 67 0  0.61  0.19  0.14  0.94 
Eyes Closed ∆y2 Control 33 1 28.50 15.92  6.32 66.79 
  Ménière 76 10 80.05 71.36  6.73 295.60 
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We used the .632+-bootstrap [7], which is an advanced estimator of classifier error, as the 
evaluation function during the search. It uses the leave-one-out bootstrap estimator, ε(0), 
that estimates the performance of a classifier by building it on bootstrap samples and 
classifies samples left out of the bootstrap sample. The ε(0) is pessimistic as it does not use 
all the data; the .632-bootstrap tries reduce the bias by using a weighted average of ε(0) and 
resubstitution error. The .632+-bootstrap is an improvement of .632-bootstrap that takes 
overfitting into account. It adjusts the weighting between ε(0) and resubstitution error using 
estimated relative overfitting rate. We computed estimate from 500 bootstrap samples to 
keep the variance low during variable selection. After about 4-5 variables the search gets 
improvements that are close to the variance of the .632+-estimator resulting from the 
bootstrap samples and also starts to correspond to less than one case’s contribution to the 
estimate, so we decided to select 5 variables. A subset containing fewer variables is also 
easier to interpret. The whole selection process was evaluated using leave-one-out cross-
validation (LOOCV). 

3. Results and Discussion 

The LOOCV error of the selection process was 13.6%. Using all the data, SFFS selected a 
subset of 5 variables: eyes closed CEA, ∆x2, VFPF1, and moving platform Dys, VFPF1. 
The .632+ bootstrap error estimate for the selection was 9.5%. The selected subset only 
contained features from two tests. Specifically, it did not contain information from tests 
using VR visual stimulation. However, the groups differ significantly in some of the 
variables obtained from the VR tests. The search procedure decided that the selected 
parameters generalize better according to .632+-bootstrap error estimates. The other 
parameters are probably still useful, for example, for differential diagnosis.  
One interesting find here is that eyes closed VFPF1 is included in the parameters. The 

VFPF1 parameters are computed from the VGRF that is rarely analyzed and yet they seem 
to provide useful information for classification. The parameter detects slow fluctuations in 
the instantaneous weight on the platform. These fluctuations arise when the subject moves 
his center of gravity (COG) vertically, for example, by bending his knees or from the hip. 
One reason may be that the subjects lower their COG for better balance. Maintaining this 
slightly lower position would cause more vertical movements than standing with legs 
straight. It could also result from a different postural control strategy. In the case of the 
moving platform tests, VFPF1 mostly detects the use of extra support from the safety 
harness. The eyes closed CEA estimates how much the subject sways during quiet standing 
with eyes closed. Ménière patients being more visually dependent tend to sway more with 
eyes closed. The diffusion analysis parameters are more difficult to interpret.  The 
parameter ∆x2 can be roughly interpreted as how far the COP travels in one direction 
before turning back; for controls the distance is about 0.36 cm and for Ménière cases it is 
about 0.62 cm.  The parameter Dys measures in a way how quickly the COP moves away 
from its current position in the anteroposterior direction. Here the value is greater for 
controls than for Ménière cases. This result may be an artifact from hanging on the safety 
harness as the extra support reduces the need to use ground reaction forces to maintain 
balance and probably also results in smaller COP movements. 

4. Conclusion 

We had measurements of 77 Ménière cases but 22 had incomplete data, because they were 
unable to complete all the tests and all control subjects were able to complete all the tests. 
Thus, if a test subject is unable to complete a test then there is reason to suspect a balance 
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disorder. All of the subjects included in the variable selection had complete data. Taking 
this into account, we have shown that our test setup can reach near 90% classification 
accuracy with these cases. The generalizability of this result is probably reduced by the age 
and sex differences between the control and Ménière group and is also somewhat uncertain 
due to the small sample. The selected variable subset highlighted some of the differences 
between controls and Ménière patients. In the future, we will also consider finding 
differences between patient groups for differential diagnosis of different balance disorders, 
which is a much more difficult problem. Eventually we also have to consider handling 
missing data as many of the patients have difficulties completing the series of tests used in 
this study. 
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