
Designing Web Services in Health 
Information Systems: From Process to 

Application Level 
Juha Mykkänena, Annamari Riekkinena, Pertti Laitinenb, 

Harri Karhunenc, Marko Sormunena 

aUniversity of Kuopio, HIS R & D Unit, IT Service Centre, Kuopio, Finland 
bUniversity of Kuopio, Shiftec, Dept. of Health Policy and Management, Kuopio, Finland 

cUniversity of Kuopio, Dept. of Computer Science, Kuopio, Finland 

Abstract 

Service-oriented architectures (SOA) and web service technologies have been 
proposed to respond to some central interoperability challenges of heterogeneous 
health information systems (HIS). We propose a model, which we are using to define 
services and solutions for healthcare applications from the requirements in the 
healthcare processes. Focusing on the transition from the process level of the model 
to the application level, we also present some central design considerations, which 
can be used to guide the design of service-based interoperability and illustrate these 
aspects with examples from our current work in service-enabled HIS. 

Keywords: 
Health information systems, Services, Integration, Interoperability, Interfaces 

1. Introduction: Service-oriented architectures for HIS? 
Central challenges for Health Information Systems (HIS) include lack of reuse, redundant 
data and functionality and heterogeneous technologies. Adaptation to new requirements and 
multiple medical cultures and integration with existing systems is difficult in constantly 
changing health environment. [1,2]. There are also growing demands to coordinate or 
automate various processes, and to find common description and ways to execute them  via 
electronic transactions to support seamless and quality care to the patients [3-6].  
Service-oriented architectures (SOA) have been suggested as a design and technology 

strategy of complex enterprise application environments [7,8]. SOA includes practices and 
frameworks that enable application functionality and information to be provided and 
consumed as services [8-10]. From technical viewpoint SOA is essentially a collection of 
software services that communicate with each other over network to pass data or to 
coordinate some activity. Services can be implemented using different technologies, and 
can encapsulate functionality and information from existing applications, thus allowing the 
reuse of the existing IT investments. [10,11,7]. Thus, the main expected benefits of SOA 
seem to support well the requirements of heterogeneous IS domains such as healthcare. 
We argue that a SOA-based approach must support different interoperability needs, 

different degrees of integration, different messaging patterns, and different phases of the 

Connecting Medical Informatics and Bio-Informatics
R. Engelbrecht et al. (Eds.)
ENMI, 2005

515

Section 8: Implementation & Evaluation of Clinical Systems



development process. In this paper we propose a model for design considerations that 
should be perceived in service-based application development and integration for HIS.  

2. Methods: Web services and service design approach 
Web services are software components or applications which interact with one another 
using XML-based Internet technologies [12,5,13]. They offer a platform-neutral interfacing 
and communication mechanism, have wide infrastructure support and have significantly 
increased the interest in SOAs [7]. However, two distinct approaches to web services can 
be identified [14]. The procedural approach focuses on bottom-up application integration. 
It is based on the architecture of the existing remote procedure call (RPC) middleware, and 
current SOAP, WSDL and UDDI specifications. The document-oriented approach focuses 
on top-down business exchanges, and tries to describe the elements of (commercial) 
exchange, including the technology solutions. It is based on electronic commerce, 
documents and loosely-coupled messaging, and includes e.g. ebXML specifications. 
We are using a high-level service-oriented approach to analyse healthcare processes and 

requirements and to define services and solutions, which support the needs of health 
professionals and patients (see Figure 1). We have adapted the viewpoints from Gartner’s 
four-platform model [9]. The producer platform includes tools and technologies for Web 
services. The provider platform hosts services in the enterprise. The management platform 
contains solutions for managing the infrastructure for Web services. The consumer platform 
consists of techniques by which the services are used. The four-platform framework, 
however, focuses mainly on technical issues and does not represent the way the 
organizations really use Web services [15]. In comparison to [9], the solutions require a 
broader approach in which the requirements of the processes and the applications drive 
technical solutions. We examine the design considerations on three levels – process, 
application and platform, from the four viewpoints – provider, consumer, production and 
management. On each level the viewpoints require different kinds of considerations. The 
process level is the most relevant to the healthcare domain. While moving from the process 
level to the application level and to the platform level, the design considerations become 
more independent from the healthcare domain and more technology-oriented. 
The viewpoints on the platform level have been presented above. On the application level, 

software services are providers, and applications that use services are consumers. 
Management is the control and maintenance of the applications and the services, and 

 
Figure 1. Service-oriented analysis and design approach on Process, Application and 
Platform levels and some example considerations on these levels.

Connecting Medical Informatics and Bio-Informatics
R. Engelbrecht et al. (Eds.)
ENMI, 2005

516

Section 8: Implementation & Evaluation of Clinical Systems



production refers to the tools, technologies and methods used in the development on the 
platform level.  
On the process level the service providers are personnel who provide health services to 

their customers, including patients. The management of the processes, and services 
themselves are supported by different conventions and especially information systems, 
which links process level to the application level. The process level must drive all the 
application design decisions: its requirements must be addressed in the design of the 
solutions and services on the application level using the tools and technologies on the 
platform level. On each level, consumer, provider, management and production issues must 
be addressed to consider the needed aspects of a given solution.  

3. Results: Design considerations for healthcare software services 
In this paper, we consider the linkage of process level to the application level design. We 
present several questions, whose answers guide the design of different types of service-
oriented solutions. To define basic solutions for service specifications, we apply the 
integration specification process in [16]. In particular, we focus on the phase where the 
main design decisions are made. This phase has the following steps: 

1. Select the set of requirements to be included in the services, and the basic 
integration model.  

2. Evaluate and select the content standards and other specifications to be utilised. 
These standards may have explicit or implicit consequences to the further design. 

3. Link the information and functions in the participating systems to the requirements. 
4. Identify and name the participating components (e.g. providers and consumers).  
5. Map the selected requirements to the responsibilities of the identified components. 
6. Refine the interaction solution, for example the deployment and interaction style. 
7. Identify integration points in the architecture of the participating systems. Refine 

the responsibilities of the components, identify possible extension needs. 
8. Specify interaction sequences, which may also contain user interaction. 
9. Specify service interfaces. Information contents and semantics are specified as e.g. 

document definitions in document style, and as parameter definitions in procedural 
style, and functional needs as e.g. operation names or document/message types. 

10. Define features as either required, optional or extensible from all implementations. 
11. Refine the requirements for implementations or further technical specifications. 

We propose the following questions to guide the solution specification, especially in steps 
1 and 6. The design implications of different options are also discussed briefly. The list in 
non-exhaustive, but according to our experiences, it covers the main considerations to guide 
the design of services. 

a. What is the main integration model? Integration models can be information-
oriented, service-oriented, user-driven or process-oriented (adapted from [17]). If 
the main requirements are focused on information sharing or transfer, document 
approach with declarative messages or documents is often selected. If the main 
requirements are computationally oriented, e.g. shared functionality, a service (or 
API) interface with imperative operations is a natural fit. If the main requirements 
focus on usability or a consistent view to information or several applications, it 
should be considered whether to use services or other approach, although service-
oriented context management interfaces or visually-oriented services such as WSRP 
(Web Services for Remote Portals) [18] can also be used. If the main requirements 
are focused on processes, a breakdown of the steps of the process into smaller 
(information or service) interactions, and the use of process-oriented specifications 
such as BPEL (Business Process Execution Language) should be considered. 

Connecting Medical Informatics and Bio-Informatics
R. Engelbrecht et al. (Eds.)
ENMI, 2005

517

Section 8: Implementation & Evaluation of Clinical Systems



b. What is the required level of adaptability? Changes can occur in the information 
contents, the context of the system, or the system itself. In the procedural style, 
exact parameters for operations are defined. This results in precise standard 
interface, and can be supported by automated tools. In the document style, there are 
more chances for adaptation. To support maximum flexibility, a two-level approach 
with e.g. (meta) reference model and constraining archetypes can be selected [2], 
but this type of solution may impose difficulties for existing systems due to the 
changes in the development approach. Requirement may also be to encapsulate 
changes, e.g. to support legacy migration, or to provide content-neutral operations, 
which may carry different information (e.g. templates) in different settings. 

c. Is the goal to use a shared/unified model, or federation/mediation between the 
participants? In information-oriented integration, a shared document repository and 
message-based document transfer using messaging broker to copy information from 
one system to another are examples of unified and federated solutions, respectively. 
Common service interfaces such as those of OMG Healthcare DTF [4] are examples 
of shared service-oriented model. 

d. What is the required level of granularity? For rapid and repeated interaction, e.g. 
related to the atomic user actions, small procedure calls are suitable as parts of a 
larger service. For batch-oriented or cross-organizational transactions, with large 
amounts of diverse information, document-oriented messaging can provide benefits. 

e. How tight integration is aimed at? Typically in a shared service, only an 
identification or a reference to a given entity is given, whereas in loose integration 
(e.g. between organizations), all the relevant information is transferred between the 
systems. Tight integration often requires guaranteed availability of the invoked 
service, whereas in document style messaging, guaranteed delivery is aimed at. Also 
bidirectional invocations and strict data typing tighten the integration solutions. 

f. What is the number of consumers and providers? In RPC/API style, point-to-point 
request/response model is usually used between the consumer and the provider, and 
registries are used for addressing. In document style, mediating brokers  or buses 
can route and copy the messages to several consumers or providers. This requires 
additional addressing and routing specifications and infrastructure. 

g. What is the message exchange pattern, e.g. is a response needed and should it be 
immediate? While RPC is inherently designed for user-driven call-reply with quick 
response, this can also be implemented with document-oriented services. 

h. Does the provider need to maintain consumer-specific state, context or session 
between invocations? Common design recommendation for services is to avoid 
stateful services to ensure performance. However, state management may be an 
explicit requirement for a service (e.g. user-specific context repository, authorized 
session management or to maintain state in lengthy processes).  

To efficiently solve design problems, answers should be specified for each of these 
questions. After this it is relatively straightforward to select technologies and tools capable 
of supporting the needed solutions, or to select another approach instead of services. 

4. Discussion: Examples of different types of service specifications 
In Table 1, we have compared three solutions for software services from the HIS projects 
we have been involved in, using the approach above. DRG classification services are used 
for assessment of resource utilisation in healthcare facilities for billing or care assessment. 
EPR archive interfaces support the storing of clinical documents in archives. Context 

Connecting Medical Informatics and Bio-Informatics
R. Engelbrecht et al. (Eds.)
ENMI, 2005

518

Section 8: Implementation & Evaluation of Clinical Systems



repository interfaces are used to provide single sign-on and application synchronization to 
improve the usability of various clinical and administrative applications.  
As seen in Table 1, the answers to the specified questions point the designs for different 

cases towards different types of services: in DRG and Context interfaces, API/RPC 
approach is used, whereas documents and integration platforms are utilised for EPR 
archiving. Procedural services are useful in interactive requirements and e.g. within one 
organization, whereas document-oriented interfaces are often used in situations where the 
integration is more loose and flexible, and the infrastructure or applications are controlled 
by different organizations. For stabile functional and computational requirements where the 
participants are well-known, API-style invocations are used, where automated tools hide 
many technical aspects. For cross-organizational, federated, or one-to-many solutions, 
document style and messaging platforms are needed, typically along with additional work. 
Such solutions include Enterprise Service Bus (ESB) approach [3], which includes also 
SOA and web services. In any selected integration model, standards ease the 
implementation and improve the tool support. 

Table 1. Comparison of three service scenarios. 
Scenario DRG classifier 

interfaces 
EPR archive interfaces Context repository 

interfaces 
Requirement Produce information 

based on diagnosis and 
other information for the 
assessment and  
comparison of resource 
consumption  

Provide a common 
interface for archiving 
different types of clinical 
documents related to a 
patient (e.g. referrals, 
prescriptions) 

Maintain user-specific 
context information for 
several applications (user, 
patient, encounter etc.) 

Integration 
model 

service information user 

Adaptability static, parameters well-
known 

dynamic, different types of 
documents, support for 
local variation 

static interface, extensible 
subject definitions 

Unified or 
federated 

unified model (common 
service) 

unified model (common 
archive) and federated 
model (may need local 
content translations) 

unified model (common 
service) 

Granularity fine-grained operations 
and parameters 

large-grained documents fine-grained operations and 
parameters 

Tight/loose tight, common service 
must be available 

loose, archive may be 
queued, notification  

tight, but applications work 
also without the service 

Consumers / 
providers 

many consumers use one 
provider 

many consumers use one 
provider, variations exist 

many consumers use one 
provider 

Message 
exch. pattern 

immediate response 
needed 

no immediate response 
needed, guaranteed 
delivery needed 

immediate response 

State stateless stateless stateful 
Additional 
conside-
rations 

can be used in 
interactive and/or batch-
oriented way 

clinical documents, simple 
transfer/ archiving 
interface, additional digital 
signatures 

low implementation 
threshold for participating 
applications, no bi-
directional invocation 

5. Conclusions and future work 
We presented an approach and a set of considerations for analysing and designing software 
services in healthcare applications. We illustrated the approach with examples of different 
types of solutions. Our model considers essential differences in service designs to support 

Connecting Medical Informatics and Bio-Informatics
R. Engelbrecht et al. (Eds.)
ENMI, 2005

519

Section 8: Implementation & Evaluation of Clinical Systems



different requirements in the healthcare domain. This model alone does not cover the 
requirements elicitation on the process level, or the most technical platform considerations. 
We are using the presented approach to define several healthcare-specific solutions, and 
also participating in the standardization of service interfaces and specification approaches.  

6. Acknowledgements 
This work is part of the SerAPI and SOSE projects, funded by the National Technology 
Agency of Finland TEKES grants no. 40437/04 and 70070/04 together with a consortium 
of software companies and hospitals. 

7. References 
[1]  Van de Velde R. Framework for a clinical information system. Int J Med Inf 57 (2000) 57-72. 
[2] Beale T. Archetypes: Constraint-based Domain Models for Future-proof Information Systems. OOPSLA 

2002 workshop of behavioural semantics, 2002.  
[3]  Chappell D. Enterprise Service Bus. O'Reilly, 2004. 
[4] OMG Healthcare Domain Task Force. CORBAmed Roadmap, Version 2.0 (draft). OMG Document 

CORBAmed/2000-05-01; 2000. 
[5]   Wangler B,  Åhlfeldt R-M, Perjons E. Process Oriented Information Systems Architectures in 

Healthcare. Health         Informatics Journal 2003: 4: pp. 253-265(13). 
[6]  Ryynänen O-P, Kinnunen J, Myllykangas M, Lammintakanen J, Kuusi O. Suomen terveydenhuollon 

tulevaisuudet. Skenaariot ja strategiat palvelujärjestelmän turvaamiseksi. Esiselvitys. Eduskunnan 
kanslian julkaisu 8/2004. In Finnish. (The Future of Finnish Health Care - Strategies and scenarios to 
secure health care services in Finland in the future). 

[7] Natis YV. Service-Oriented Architecture Scenario. Gartner group, 2003. (28 Dec 2004.) Available at 
http://www4.gartner.com/DisplayDocument?ref=g_search&id=391595. 

[8] Champion K. SOA: the new architecture that leverages the old. Developers.net, 2004 (28 Dec 2004.) 
Available at http://www.developers.net/node/view/106. 

[9] Smith D. Web Services Architecture: A Four-Platform Framework. TopView, 16 May 2002. Gartner 
group, 2002.  

[10] Plummer D. A Closer Look at Service-Oriented Architecture.  Bea dev2dev, Bea Systems, 2003. (3 Jan 
2005) Available at http://dev2dev.bea.com/trainingevents/webinars/Gartner_02_14.jsp. 

[11] Sprott D. Moving to SOA. Cbdi forum, 2003. (3 Jan 2005) Available at 
http://roadmap.cbdiforum.com/reports/soa/ index.php. 

[12] Aissi S, Malu P, Srinivasan. E-Business Process Modeling: The Next Big Step. IEEE Computer 
2002:35(5):55-62. 

[13] Turner M, Zhu F, Kotsiopoulos I, Russel M, Budgen D, Bennet K, Brereton P, Keane J, Layzell P, Rigby 
M. Using Web Service Technologies to create an Information Broker: An Experience Report. Proc. of 
the 26th Int. Conf. on Software Engineering, IEEE, 2004, pp. 552-561. 

[14] Alonso G, Casati F, Kuno H, Machiraju V. Web Services Concepts, Architectures and Applications. 
Springer, 2004.  

[15] Schmelzer R.& Bloomberg J.  Retiring the Four-Platform Framework for Web Services. Zapthink, 2003. 
(28 Dec 2004.) Available at http://www.zapthink.com/report.html?id=ZAPFLASH-12032003. 

[16] Mykkänen J., Porrasmaa J., Rannanheimo J, Korpela M. A process for specifying integration for multi-
tier applications in healthcare. Int J Med Inf 2003:70(2-3):173-182. 

[17] Linthicum D. Leveraging the heritage – Approaches to Integrating Established Information Systems. 
Intelligent EAI, April 15, 2003. CMP Media LLC, 2003. 

[18] Reshef E. Building Interactive Web Services with WSIA & WSRP.Web Services Journal 2002:12(2):2-6. 

7. Address for correspondence 
Juha Mykkänen, University of Kuopio, HIS R & D Unit, P.O.B. 1627, Fin-70211 Kuopio, Finland, 
Juha.Mykkanen@uku.fi 

Connecting Medical Informatics and Bio-Informatics
R. Engelbrecht et al. (Eds.)
ENMI, 2005

520

Section 8: Implementation & Evaluation of Clinical Systems


	TOC Scientific Contributions
	Section 8: Implementation & Evaluation of Clinical Systems
	3LGM²-Modelling to Support Management of Health Information Systems
	Specification of a Reference Model for the Domain Layer of a Hospital Information System
	Analysis and Specification of Telemedical Systems using Modelling and Simulation: the MOSAIK-M Approach
	Realizing a Realtime Shared Patient Chart Using a Universal Message Forwarding Architecture
	Designing Web Services in Health Information Systems: From Process to Application Level
	MedFlow Œ Improving Modelling and Assessment of Clinical Processes
	SOMWeb Œ Towards an Infrastructure for Knowledge Sharing in Oral Medicine
	Measuring the Impact of Online Evidence Retrieval Systems Using Critical Incidents & Journey Mapping
	Design and Implementation of an ICU Incident Registry
	Applicability of Textual Clinical Practice Guidelines: Impact of Physician Interpretation
	Semantic Challenges in Database Federation: Lessons Learned
	MobiDis: Toward a Patient Centric Healthcare Information System
	Obstacles to Implementing an Execution Engine for Clinical Guidelines Formalized in GLIF
	Implementing a New ADT Based on the HL-7 Version 3 RIM
	Design and Development of a Monitoring System to Assess the Quality of Hospital Information Systems: Concept and Structure
	Trends in Evaluation Research 1982 Œ 2002: A Study on how the Quality of IT Evaluation Studies Develop
	Interfacing Clinical Practice and Error Prevention
	Using Feedback to Raise the Quality of Primary Care Computer Data: A Literature Review
	Usability Evaluation of a Laboratory Order Entry System: Cognitive Walkthrough and Think Aloud Combined
	Operation Management System Evaluation in the Central Finland Health Care District - End Users™ View of System Implementation
	Comparisons of Physicians™ and Nurses™ Attitudes towards Computers
	Patients™ Location-Awareness in the Emergency Department





