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Abstract: Purpose: The aim of this work is to evaluate the potential of combining different Computer 
Aided Detection (CADe) methods to increase the actual support for radiologists of automated systems 
in the identification of pulmonary nodules in CT scans.  
Methods: The outputs of three different CADe systems developed by researchers of the Italian MAGIC-5 
collaboration were combined. The systems are: the CAMCADe (based on a Channeler-Ant-Model which 
segments vessel tree and nodule candidates and a neural classifier), the RGVPCADe (a Region-Growing-
Volume-Plateau algorithm detects nodule candidates and a neural network reduces false positives); 
the VBNACADe (two dedicated procedures, based respectively on a 3D dot-enhancement algorithm 
and on intersections of pleura surface normals, identifies internal and juxtapleural nodules, and a 
Voxel-Based-Neural-Approach reduces false positives. A dedicated OsiriX plugin implemented with the 
Cocoa environments of MacOSX allows annotating nodules and visualizing singles and combined CADe 
findings. 
Results: The combined CADe has been tested on thin slice (lower than 2 mm) CTs of the LIDC public 
research database and the results have been compared with those obtained by the single systems. The 
FROC (Free Receiver Operating Characteristic) curves show better results than the best of the single 
approaches.  
Conclusions: Has been demonstrated that the combination of different approaches offers better results 
than each single CADe system. A clinical validation of the combined CADe as second reader is being 
addressed by means of the dedicated OsiriX plugin. 
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Introduction 

Lung cancer is one of the most important health issues in developed countries and 

the most common cause of cancer-related deaths, with about 28% and 19% of all 

cancer-related deaths in the United States [1] and in European Union [2], 

respectively. 

Lung cancer most commonly manifests itself as non-calcified pulmonary nodules. 

Computed Tomography (CT) was shown to be the most sensitive imaging 

modality for the detection of pulmonary nodules, particularly after the 

introduction of the multi-detector-row and helical CT technologies [3]. Therefore, 

screening programs based on low-dose CT are regarded as a promising approach 

for detecting early-stage lung cancers [4] and reducing the number of lung cancer 

deaths, as recently confirmed by the U.S. National Cancer Institute in its release 

of early results from the National Lung Screening Trial (NLST) [5]. The amount 

of data that need to be interpreted in screening CT examinations can be very large, 

especially when multi-detector helical CT and thin collimation are used, thus 

generating up to about 500 2-dimensional images per scan. It was indeed 

demonstrated that a large number of nodules (20–35%) can be missed in screening 

diagnoses [6].  

In such a scenario, computer aided detection (CAD) methods could be very useful 

in supporting radiologists in the identification of early-stage pathological objects. 

It has already been demonstrated by several studies [7-9] that, in addition to a 

considerable time saving, the sensitivity of radiologists assisted by computer 

aided detection (CAD) systems improves with respect to the performance of the 

radiologists alone. 

However, as it is shown in this paper and in [10,11], very good performances can 

be achieved combining different CAD systems, more than a developing a single 

optimal approach. In prior work [10,11] it was shown that there is always a 

combination of CAD that over-performed the best CAD scheme. It is likely that 

different methods have complementary strengths. Along these lines, the MAGIC-5 

Italian Collaboration [12,13] adopted a development strategy that led to three 

different CADe algorithms for automated lung nodule identification. The present 

paper discusses how the three approaches were combined to generate a common 

system, the M5 CAD.. 
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Methods and materials 

The three CADe system prototypes, described more in detail in the following, are:  

- the 
CAM

CAD (Channeler Ant Model CAD), in which, after the lung volume  

identification [14], the Channeler Ant Model is used to segment the vessel tree 

and the nodule candidates and a Feed-Forward Neural Network (FFNN) is 

implemented in order to classify the segmented objects [15-17];  

- the 
RGVP

CAD (Region Growing Volume Plateau CAD), in which, after the lung 

volume identification [14], a region growing algorithm is iteratively applied to the 

lung volume to detect nodule candidates, a thresholding on the candidate volume 

and sphericity and a neural network classifier are applied to reject the false 

positive findings [17,18];  

- the 
VBNA

CAD (Voxel Based Neural Approach CAD), in which, after the lung 

volume segmentation, a 3D Dot-Enhancement (DE) algorithm identifies the 

internal nodule candidates [19,20] then, a procedure enhancing regions where 

many pleura surface normals intersect provides the juxtapleural nodule candidates 

[21] and a SVM (Support Vector Machine) classifier working at the voxel level 

reduces the amount of false positives [17, 22]. 

The public research database LIDC [23] was used to train and the validate all the 

CAD systems. 

The dataset 

The dataset used for this study consists of 138 CT scans from the LIDC [23] 

database,  the biggest publicly available collection of annotated CTs. LIDC is a 

multi-centre and multi manufacturer database, currently under development, 

popolated with CTs of different collimation, kVp, tube current and reconstructed 

slice thickness. It therefore provides a general sample which is likely to 

realistically represent the input from a large scale multi-centre screening program. 

Presently, several hundred cases of the LIDC database are available; for this study 

138 CT “thin slice” scans (i.e., scans with a slice thickness in the 0.5 to 2.0 mm 

range), were selected. 

In order to capture the inter-reader variability the LIDC consortium provides four 

different annotations made by four expert radiologists for each case, obtained in a 

two-phase reading modality. The LIDC annotations contain three kinds of objects 
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[24]: nodules with diameters > 3mm, nodules with diameters < 3mm and “false 

positives” with diameters > 3mm. The contours of the objects marked as nodules 

with a diameter > 3mm were provided by every reader together with eight 

subjective characteristics in a 1 − 5 scale: subtlety, internal structure, calcification, 

sphericity, margin, spiculation, texture, malignancy. The CT scans used for the 

analysis were acquired at a 120 kVp voltage, with a current varying from 40 mA 

to 172 mA, a pixel spacing in the 0.434 mm to 0.762 mm range and a number of 

single slices ranging from 154 to 730.  

The selected dataset was randomly divided in two homogeneous subsets, each 

containing 69 CTs, which were used for the training/optimization and for the 

validation procedures of the three CAD systems, respectively.  

The Gold Standard reference was defined as the group of nodules with diameters 

> 3mm annotated by at least two radiologists. The nodules with diameters > 3mm 

annotated by only one radiologist were not considered as false findings in the 

evaluation of the FROC curves. A nodule has been visually labeled either as 

internal, if fully contained in the lung parenchyma, or as juxtapleural, if connected 

to the lung volume border. According to these criteria, the training dataset 

contains a total of 138 (96 internal and 42 juxtapleural) nodules, while the 

validation dataset contains a total of 114 (95 internal and 19 juxtapleural) nodules. 

The Channeler Ant Model CAD 

The full CT analysis is a sequence of four functional modules: lung segmentation, 

nodule hunter, filtering stage and neural network classification. 

Lung segmentation 

Lung segmentation aim is to extract the lung parenchyma from the whole CT 

scan. A brief description of the algorithm is: 

• an optimal gray-tone threshold θ0 for the segmentation of the respiratory 

apparatus is found by the analysis of Hounsfield histogram; 

• a 3D region growing with simple threshold is applied to the whole CT 

volume; consequently, a voxel is included in the region to be grown, if its 

Hounsfield value is smaller than θ0. The output of this procedure is a 

binary mask of the respiratory system containing trachea, bronchi and 

lungs; 
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• the correct handling of the hilar region is obtained by removing external 

airways through a wave-front simulation model with a proper stop 

condition. The output  of this procedure is a mask containing only the 

lungs; 

• incidental fusion of the lungs is corrected using  a new threshold value θ0, 

applied only to the fusion zone;  

•  a morphological 3D closing includes pleural and internal nodules and 

patches the vessel concavities.  

This lung-segmentation module is also used in the 
RGVP

CAD system. 

Nodule Hunting 

The Channeler Ant Model [15,16] is used as a segmentation method for the vessel 

tree and the nodule candidates. The approach is iterative, it consists in a sequence 

of two independent deployments for the right and left lungs.  

The first ant colony segments the vessel tree, starting from an anthill in the 

vicinity of the root of the tree. Ants explore (i.e. live in) a 3D environment 

described in terms of positions and intensities of voxels. Their life cycle is a 

sequence of atomic time steps, during which they behave according to a 

predefined set of rules [15]: they release pheromone while moving in the 3D 

environment defined by the lung volume; they also change their energy, so as to 

be able to reproduce or die depending on its value. The environment is defined by 

the voxel image intensities, which can be thought of as the amount of available 

food for the colony: therefore, voxel intensities should be progressively consumed 

when the number of visits increases. This mechanism, required to make the 

colony evolve and explore the environment, is implemented in a complementary 

way: whenever the limit to the maximum number of visits in a voxel is reached, 

the voxel is no more available as a destination.  When all the ants in the colony 

have died, the process stops, the segmented object is removed from the original 

image and its coordinates are added to a list. 

In the remaining image, any voxel with intensity above a predefined threshold is a 

new anthill and a new ant colony is deployed. If the size of an object is large with 

respect to the maximum expected size of a nodule, as it happens with the 

bronchial and vascular trees, the object is processed and smaller connected objects 

are looked for. The procedure is repeated by trying as anthill each voxel in the 
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lung volume with an intensity larger than -700 Hounsfield Units: when no more 

voxels meet the conditions to become anthills, the information provided by the 

pheromone map is analyzed.  

An iterative analysis is carried out: each voxel with a pheromone content above 

the minimum accepted value (8,000 units) is used as a seed for a region growing 

with an adaptive threshold. The threshold value is lowered iteratively for each 

seed and the selected value is the one corresponding to the minimum growth of 

the region when the hypothetical threshold is lowered by a quantum. 

Whenever a region is larger than a preset value (50 voxels), it is further analyzed 

in search of nodule candidates connected to it. In order to do so, a rolling sphere 

scans the finding and disentangles spherical-like structures. The procedure is 

repeated three times, with spheres of increasing initial radius (1.5, 2.5, 3.5 mm). 

In short, a full sequence of ant colony deployments generates a pheromone release 

map that is analyzed by a dedicated filter, which turns it into a list of candidate 

findings, each defined by a list of voxels and the values of a set of features related 

to their geometrical properties, their intensity pattern, their location in the lung. 

Filtering 

The number of candidates per CT, although depending on the number of slices, 

ranges between several hundreds to a few thousands per scan, a number far too 

large to be used as input for a neural network classifier. However, the vast 

majority of findings is easily rejected with some selections that make use of the 

correlation between few of the evaluated features: the radius, the sphericity, the 

fraction of voxels connected to the cage, the so called attach flag (AF), which 

identifies whether the finding is isolated (AF = 0) or not (AF > 0). If the finding is 

attached to a larger structure (i.e., the vessel tree), AF is related to the size of the 

rolling sphere and can range from 1 to 3. 

The filtering is performed with a cut function on the histogram that correlates the 

sphericity to the radius: findings with a sphericity below the cut value at any given 

radius are rejected. Given the different way in which findings are extracted from 

the pheromone map, for each AF value the function parameters are different. The 

filtering level is defined as a compromise between the requirement of maintaining 

a high sensitivity and the goal of forwarding as less as possible findings to the 

classification stage. 
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An additional filter requires the fraction of voxels connected to the cage to be 

smaller than 0.6, in order to get rid of elongated artifacts attached to the cage. 

After the filtering stage, the average number of findings in the training/testing and 

validation set is 27 and 25, respectively. 

For the training/testing set, the sensitivity and the number of false positives/scan, 

defining the first point on the FROC curve obtained with the classification 

module, are 0.81 and 0.83, respectively. 

Classification 

Until the end of the filtering stage, very few of the nodule candidate features are 

used. In particular, no direct information about the image intensities in the 

candidate voxels is taken into account. The selected set of features for the 

classification stage makes use of properties that describe the finding size, shape, 

location, intensity (inside and on the border), as well as the above-defined AF 

value, which corresponds to different parameters of the nodule hunting algorithm. 

The classification was carried out with a four layer FFNN: 11 neurons in the input 

layer, 25 and 7 in the intermediate layers and one in the output layer. 

The full list of features for the input layer follows: sphericity, radius, Shannon 

entropy of the inner and the border voxels, skewness, kurtosis, average and 

standard deviation of the voxel intensities, fraction of voxels connected to the 

cage, AF value. The classification was optimized on the training/testing sample of 

69 CTs and 138 true findings, with a cross validation procedure: 30 sub-list of true 

findings and false findings were classified as testing sample against all the other 

true and false findings used as training sample. 

 
The Region Growing Volume Plateau CAD 
 
 
The 

RGVP
CAD system is an upgrade of the CAD system presented in a previous 

paper [18]. At present the 
RGVP

CAD system consists of four main modules: 

• the lung segmentation, previously described  in  the lung segmentation section 

of the  
CAM

CAD; 

• nodule candidate detection performed through an iterative region growing; 

• statistical and morphological feature extraction; 

• candidate nodule classification by means of linear filters and a FFNN. 
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Nodule Hunting 

The nodule candidate detection is carried out through an iterative region growing. 

The RG inclusion rule is the logical AND of the following two rules (fig. 1): 

1) Simple Bottom Threshold (SBT) rule, i.e. a voxel is included in the region 

if its Hounsfield value is greater than a threshold θ1; 

2) Mean Bottom Threshold (MBT) rule, i.e. a voxel is included in the region 

if the average of the Hounsfield values of the voxel and its 26 neighbors is 

greater than a threshold θ2. 

The θ1 threshold is fixed, while the θ2 threshold is varied in the range [θb, θt] until 

an optimal value is found for every nodule candidate, on the basis of size-related 

properties: a graph of the region volume (or number of voxels)  as a function of 

the θ2 value is generated (fig. 2) and θ2 is set to a value corresponding to the 

plateau. Using this procedure with a value of θb close to the Hounsfield unit of air 

and appropriate values for θ1 and θt, it is possible to obtain an optimal  

segmentation of the nodule candidates in the lung parenchyma, without any prior 

knowledge of their average Hounsfield value. 

Filtering 

A significant number of statistical and morphological features is calculated in the 

third module of the 
RGVP

CAD system. The initial set of features for each candidate 

nodule is 17: Volume, Radius Variance, Over Radius Variance, Radius Standard 

Deviation, Over Radius Standard Deviation, Radius Skewness, Radius Kurtosis, 

Over Radius Kurtosis, Radius Compactness (radius - error radius ratio), Over 

Radius Compactness, Maximum Distance (from center to farthest voxel), 

Roundness, Ellipticity, Maximum Hounsfield intensity, Standard deviation of 

Hounsfield intensity, Shannon’s Entropy of Hounsfield intensity distribution. The 

Over prefix refers to those features that are evaluated only for voxels whose 

distance from the the candidate center of mass is greater than the average radius of 

the candidate nodule. The best discriminant features, selected by means of the 

Sequential Backward Selection (SBS) procedure [25], are: Volume, Over Radius 

Kurtosis, Radius Compactness,  Maximum Distance, Maximum Hounsfield 

intensity, Standard deviation of Hounsfield intensity, Shannon’s Entropy of 

Hounsfield intensity distribution. 
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Classification 

The candidate nodule classification  consists of two linear filters on the candidate 

features, volume and roundness, a FFNN is then applied. The filtering is applied 

to reduce the great number of false positive candidates generated by the second 

module of the CAD system: only candidate nodules with both volume and 

roundness above a minimum value are selected as candidate nodules for the next 

step. After this filtering, the candidate nodules are classified by means a FFNN, 

with 7 neurons in the input layer, 3 in the hidden layer and one in the output layer. 

The training  procedure applied was the back-propagation algorithm. In order to 

optimize the parameters and to train the 
RGVP

CAD  system a 2-fold cross-

validation technique [26] was used. 

The Voxel Based Neural Approach CAD 

The 
VBNA

CAD system deals differently with internal and juxtapleural nodules, by 

means of two dedicated procedures: CADI for internal and CADJP for juxtapleural 

nodules. Both are three-step procedures [17, 19-22].  The first step consists in the 

lung segmentation; the second step consists in the ROI (Region Of Interest) hunter 

and performs the candidate nodule selection; the third step consists in the FP 

reduction. For the last step, an original procedure, the Voxel-Based Neural 

Approach is implemented to reduce the number of FPs in the lists of internal and 

juxtapleural candidate nodules. 

Lung segmentation 

A three-steps approach based on thresholding, region growing and morphological 

operators is implemented [27]: 

• once the scans have been isotropically resampled, to separate the low-intensity 

lung parenchyma from the high-intensity surrounding tissue (fat tissue and bones), 

the voxel intensities are thresholded at a fixed value; 

• in order to discard all the regions not belonging to the lungs, the biggest 

connected component not touching the boundary of the volume is considered; 

• vessels and airways are not in included in the segmented lung at this stage since 

their volume is outside the segmented lung volume. To include them without 

modifying the pleura surface morphology, i.e. without modifying the shape of 
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pleura irregularities (including juxtapleural nodules), a combination of 

morphological operators is applied. In particular, a sequence of the dilation and 

the erosion operators with spherical kernels rd and re, with re > rd is implemented. 

Finally, the logical OR operation between the so-obtained mask and the original 

lung mask provides the final mask, where the vessels and the airway walls are 

filled in, while maintaining the original shape of the lung border.  

The identified lung mask is used for CADI, whereas its boundary is used for 

CADJP.  

ROI hunter for internal nodules 

In the CADI the internal nodules are modelled as spherical objects with a 

Gaussian profile, following the approach proposed in [28]. To detect this kind of 

objects, a dedicated DE filter is implemented. The filter determines the local 

geometrical characteristics of each voxel by evaluating the function zdot using the 

eigenvalues of the Hessian matrix: 

 

where are the eigenvalues of the Hessian matrix for each voxel, sorted 

so that  | 

To enhance the sensitivity of this filter to nodules of different sizes, a multi-scale 

approach has to be followed. This approach, combines the zdot function with 

Gaussian smoothing at several scales with the prescriptions given in [28].  The 

result of the filter is a matrix 

 

where  are the sigma of the Gaussian smoothing.  

Local maxima of the matrix filtered by the dot-enahncement are the internal 

candidate nodule locations. A large number of false positives is included at this 

stage, above all crossings between blood vessels.  

ROI hunter for juxtapleural nodules 

In the CADJP, in order to identify juxtapleural candidate nodules, pleura surface 

normals are constructed and each voxel is assigned a score proportional to the 

number of normals intersecting in it. Normals are evaluated using the triangular 

mesh representing the pleura surface, obtained applying the marching cube 
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algorithm on the lung mask. In particular, the normal to each triangle is calculated 

by using the vector product between the triangle edges; then the normals to each 

mesh vertex are evaluated averaging all the triangle normals of the neighboring 

triangles. 

Since the evaluation of the normal intersections in the real 3D space is a complex 

and computationally intensive operation, it is implemented in the voxel space. 

This means that each voxel is associated a score proportional to the number of 

normals passing through it. To deal with noise, cylinders with Gaussian profile are 

considered instead of segments [21,29]. This information is collected in the score 

matrix S(x,y,z). The local maxima of the 3D matrix S(x,y,z) are the juxtapleural 

candidate nodule locations. Also in this case a large number of FPs is found, 

mostly due to irregularities in the pleura surface (e.g. apical scars, pleural 

thickening and plaques) and movement artifacts.   

Classification 

In order to classify the candidate nodule findings obtained in the previous step, an 

original procedure, the Voxel-Based Neural Approach [20-22], performs the 

reduction of the number of FPs in the lists of internal and juxtapleural candidate 

nodules. First, a ROI including voxels belonging to the candidate nodule is 

defined from each location provided by the previous step. The basic idea of the 

VBNA is to associate to each voxel of a ROI a feature vector defined by the 

intensity values of its 3D neighbours ( in this case 5x5x5 intensity values ) and the 

eigenvalues of the gradient matrix and of the Hessian matrix. In the original 

VBNA method the feature vectors were then classified by a three-layer FFNN 

which was trained to assign each voxel either to the nodule or normal tissue target 

class. In this paper a different classifier is implemented at this stage: Support 

Vector Machines (SVM) are used instead of neural networks. At the end of the 

procedure, each ROI is assigned a degree of suspicion averaging the score of all 

the voxels belonging to it. 

CADI and CADJP combination 

In principle, CADI and CADJP  act on two complementary regions of the image.  

In practice, due to imperfections in the lung segmentation, i.e. pleural nodules 

under-segmented by the procedure, it may happen that the same object is detected 
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by the two procedures. To prevent having two marks pointing the same object, a 

simple clustering rule is applied:  if the distance between the centres two findings 

is less than 4.0 mm, the finding with lower probability is discarded. This 

clustering rule is based on the fact this kind of collisions happen mostly for nodule 

objects. 

 

The combination procedure 

As shown in [10,11], there is no reason to assume that a single CAD scheme 

would be optimal for nodule detection. It is more likely that different methods 

have complementary strengths, as already shown on different datasets in [10] and 

[11]. The outputs of the three CAD sub-systems described are evaluated and 

combined following the same procedure adopted for the ANODE09 study [10,11].  

The resulting CAD system is referred to as M5 CAD system. The findings of each 

CAD sub-system must be considered in terms of their degree of suspicion (i.e. 

likelihood or probability to be a true nodule) p, which is the final output of the 

procedure of candidate nodules classification for the three separate sub-systems. 

In order to combine findings from different CAD sub-systems, a normalization of 

the finding probabilities is needed [11]. This operation is carried out by 

associating a new value f(p) to each finding with degree of suspicion p. 

The new degree of suspicion f(p) is evaluated according to the performance 

obtained by the corresponding CAD system on the validation set, i.e. evaluating 

for each finding with probability p 

, 

where TP (FP) is the number of true (false) positives obtained by considering all 

the CAD findings with pi >= p. Of course this procedure requires to know the 

annotations and the performance of each CAD system on a selected set of data.  

The f(p) values can therefore be considered as the probability that a finding in the 

validation set with likelihood p or higher represents a true nodule.  

The function f(p) is computed for every finding from every sub-system. All 

findings are then sorted so as fi, i = 1… n and fi >= fj if i < j. Starting at fi with i = 

1, all findings fj , j = i + 1… n are checked against a “matching condition” defined 
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by a preselected clustering distance. If two findings fi and fj match, then fi = fi + fj , 

and fj is removed from the list of findings. 

Results 

The results obtained for the separate systems on the 69 CTs of the validation 

dataset, containing a total of 114 nodules annotated by at least two radiologists, 

are reported in terms of FROC (Free-response Receiver Operating Characteristic) 

curves in Fig. 3. The FROC curves are evaluated using the following matching 

criterion [10]: a CAD finding is considered a true positive if its Euclidean distance  

from the center of the lesion annotated by the radiologists is less than m=1.5 times 

the radius of the annotated lesion. 

Among the presented CAD systems, the best performance is provided by the 

CAM algorithm, which starts the classification step at about 85% sensitivity and 

25 FP findings/CT exam. The VBNA and RGVP algorithms are 2 and 4 times less 

selective in the nodule hunting stage, respectively.  

In addition to the FROC, the CAD performance was also evaluated by means of a 

Score Value SV, as defined in [10]: the average sensitivity at 7 fixed thresholds 

(1/8,1/4,1/2,1,2,4,8 FP/CT) along the FROC curve: 

SV = ( Sens1 / 8+ Sens1/ 4 + Sens1/ 2+ Sens1+ Sens2 + Sens4 + Sens8) /7  

In order to verify that the three CAD systems are not too sensitive to the FROC 

matching criterion, the score SV was evaluated varying the m factor [10]: the 

results reported in Fig. 4 show that indeed the CAD systems performances are 

almost independent of m and that the selected matching condition (m = 1.5) is a 

stable choice. 

The algorithm combination, computed considering a clustering distance of 3 mm 

and reported in Fig. 5 for the 0-10 false positive findings/CT range, confirms that 

there is an added value in combining different nodule hunting approaches. 

In order to quantify the improvement introduced by the combination, the Score 

Values SV were computed for m=1.5. The results, reported in tab.1, show that the 

combined M5 CAD performs better than the CAM CAD of about 5% on average  

in the 1/8 to 8 FP/CT range. 
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 CAM VBNA RGVP Combination 
Score Value (SV) 0.57 0.43 0.39 0.62 

 

 

 

 Table 1: Score Value (SV) for the separate CAD-subsystems and for the 

combined M5 CAD. 

 

The number of findings from different systems that cluster during the combination 

procedure provides a qualitative explanation of the reason why the combination 

procedure is helpful: the number of detected true nodules increases with the 

number of CADs in the combination, whereas the number of FP decreases (see 

tab.2). 

Moreover, it is possible to evaluate the average probability increase of each 

clustered finding, defined as the difference between its probability f(p) after the 

combination and the highest probability among those of the findings that 

contribute to the combination. For TPs and FPs the average probability increase is 

0.67 and 0.04, respectively. 

The previous analysis shows, once more and on a different dataset, that combining 

different CAD system is helpful mostly because of the complementarity of the FP 

findings. 

 1 CAD  2 CAD  3 CAD 

Number of TP 18 25 65 

Number of FP 36566 1410 139 

 

Table 2: Number of true and false findings detected by 1, 2 and 3 CAD-

subsystems. While the number of true findings increases when considering more 

than one sub-system, the opposite happens for the false findings. 

 

As shown in fig.5, the overall sensitivity improvement in the combination is 

minimal at high values of FP findings/CT exam; on the other hand, the number of 

FP findings/CT exam at which a given sensitivity is reached is much smaller 

(about one half) when the three algorithms are combined. In other words, the time 

spent by the radiologists in reviewing and rejecting false CAD findings would be 

much smaller with a combined system. 
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Discussion 

The advantages of a multi-thread approach in the automated search for nodules in 

lung CTs were already addressed in [10,11], where algorithms trained on different 

datasets (reviewed with different annotation protocols), proved to be 

complementary either in finding true nodules or in rejecting false findings. 

The present analysis confirms that a multi-thread approach provides better results 

than a stand-alone one, even when the algorithms are trained on the same dataset, 

although in this case the most important advantage lies in the rejection of false 

positive findings. 

In order to confirm that the M5 combined CAD system is actually useful to 

improve the performance of human experts, a clinical validation that will measure 

the contribution to the radiologists annotation of the three CAD sub-systems and 

their combination by defining a second reader protocol is being started. For this 

purpose a new dedicated OsiriX [30] plugin was developed (see fig.6). The plugin 

allows nodule annotation and visualisation: findings are shown in different 

colours for the separate CAD sub-system results, their combination and the 

radiologist annotation. It is also possible to select, using the sliders, different 

working points for each CAD and visualise only findings above the selected 

threshold. An example of the visualisation of a nodule detected by the three CAD 

sub-systems is shown in fig.7. 

Conclusions 

In this study, the performance of three different CAD sub-systems developed by 

the Italian MAGIC-5 Collaboration are presented. The algorithms, based on 

different approaches, were applied using the same working conditions on datasets 

from the LIDC database and the algorithms’ performances were evaluated 

separately and combined. In a previous work [10] it was demonstrated that 

different systems compared on the same database show different results, due both 

to the underlying algorithm and the dataset that is used to train the classifiers or to 

set the internal model parameters, and that the combination of systems may yield 

relevant improvements due to the different ability in detecting different categories 

of nodules.   
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In the present work we demonstrate that even under the same operating conditions 

different CAD sub-systems have varying strengths and weaknesses. The result of 

combining them reveals how complementary they are, especially in the range of 

false positive findings up to 10/CT exam, the most interesting for radiologists. 

The overall performance of the M5 CAD is very good, with a sensitivity that 

reaches 80% at about 3 FP/scan, even with a loose selection of the Gold Standard 

reference sample (at least two radiologists out of four that annotated the CTs). 
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Fig.1 Illustration of the inclusion rule of the 
RGVP

CAD system 

Fig.2 A graph of the volume (expressed in terms of voxels) as a function of the threshold θ2 for a 

nodule candidate.The red circle indicates the selected θ2 value. 

Fig.3 FROC curves obtained by the three CAD systems, in the range 0-100 FP/CT: in red VBNA 

CAD is shown,  in green RGVP CAD and in blue CAM CAD.   

Fig.4 Sensitivity score value (SV) in the range of 1/8 to 8 FP/CT for the 3 CAD system as a 

function of the matching distance m. 

Fig.5 The FROC curve obtained with the CAD combination compared with those obtained with 

the single systems in the range of FPs of radiological interest (0-10 FP/CT): the VBNA CAD, the 

RGVP CAD and the CAM CAD are shown in red, green and blue, respectively; the combination is 

shown in purple.   

Fig.6 Example of a screenshot of the OsiriX plugin 

Fig.7 An example of nodule visualisation 
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