A novel multithreshold method for nodule detection in lung CT
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Multislice computed tomography (MSCT) is a valuable tool for lung cancer detection, thanks to its
ability to identify noncalcified nodules of small size (from about 3 mm). Due to the large number
of images generated by MSCT, there is much interest in developing computer-aided detection
(CAD) systems that could assist radiologists in the lung nodule detection task. A complete multi-
stage CAD system, including lung boundary segmentation, regions of interest (ROIs) selection,
feature extraction, and false positive reduction is presented. The selection of ROIs is based on a
multithreshold surface-triangulation approach. Surface triangulation is performed at different
threshold values, varying from a minimum to a maximum value in a wide range. At a given
threshold value, a ROI is defined as the volume inside a connected component of the triangulated
isosurface. The evolution of a ROI as a function of the threshold can be represented by a treelike
structure. A multithreshold ROI is defined as a path on this tree, which starts from a terminal ROI
and ends on the root ROIL For each ROI, the volume, surface area, roundness, density, and moments
of inertia are computed as functions of the threshold and used as input to a classification system
based on artificial neural networks. The method is suitable to detect different types of nodules,
including juxta-pleural nodules and nodules connected to blood vessels. A training set of 109
low-dose MSCT scans made available by the Pisa center of the Italung-CT trial and annotated by
expert radiologists was used for the algorithm design and optimization. The system performance
was tested on an independent set of 23 low-dose MSCT scans coming from the Pisa Italung-CT
center and on 83 scans made available by the Lung Image Database Consortium (LIDC) annotated
by four expert radiologists. On the Italung-CT test set, for nodules having a diameter greater than
or equal to 3 mm, the system achieved 84% and 71% sensitivity at false positive/scan rates of 10
and 4, respectively. For nodules having a diameter greater than or equal to 4 mm, the sensitivities
were 97% and 80% at false positive/scan rates of 10 and 4, respectively. On the LIDC data set, the
system achieved a 79% sensitivity at a false positive/scan rate of 4 in the detection of nodules with
a diameter greater than or equal to 3 mm that have been annotated by all four radiologists. © 2009
American Association of Physicists in Medicine. [DOI: 10.1118/1.3160107]
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I. INTRODUCTION

Lung cancer is the leading cause of cancer deaths. The 5-yr-
survival rate is estimated to be only 16%." The survival rate
increases up to 49% for cases detected when the disease is
still localized; however, only 16% of lung cancers are diag-
nosed at this early stage.l Screening tests for lung cancer
focus on trying to detect the disease at an earlier and more
curable stage, in particular, for high-risk individuals. In the
past, chest radiography and sputum cytology were investi-
gated as modalities for lung cancer screening,z’3 showing a
limited effectiveness in reducing lung cancer mortality. Low-
dose helical computed tomography (CT) has provided prom-
ising results in the detection of early-stage lung cancer.*™®
The large number of images that need to be interpreted by
the radiologists in CT screening stimulated the development
of various computer-aided detection (CAD) systems for lung
nodules.”** Some of the ongoing CT lung screening trials
employ multislice CT (MSCT),”** which, compared to
single-slice helical CT, provides a higher resolution in the
axial direction. The availability of tools for a truly three-
dimensional data visualization and analysis is particularly
important in order to take full advantage of the MSCT iso-
tropic resolution. A complete CAD system for lung nodule
detection, structured in four modules, is presented:

(1) Lung segmentation based on isosurface triangulation for
modeling the pleural surface of the chest wall, and mor-
phological closure operation for separating juxta-pleural
nodules from the chest wall;

(2) regions of interest (ROI) selection based on isosurface
triangulation with varying threshold (multithreshold
method);

(3) computation of several features for each ROI as a func-
tion of the threshold; and

(4) ROI classification, based on self-organizing maps
(SOMs) and artificial neural networks (ANNs).

Il. DATA SETS
Il.LA. The Italung-CT data set

The Italung data set consists of 132 low-dose CT scans
acquired by using a MSCT scanner (Somatom Plus 4 VZ,
Siemens, Erlangen, Germany), according to a low-dose pro-
tocol at tube voltage of 140 kV, tube current of 20 mA, and
slice thickness of 1.25 mm. The reconstruction was made at
1 mm interval using B50f reconstruction kernel. The scans
were acquired at the Pisa center of the Italung-CT trial and
annotated by expert radiologis’ts.24 The number of slices per
scan ranges from 238 to 416. Each slice consists of a 512
X512 pixel matrix, with pixel size ranging from 0.52 to
0.74 mm depending on the field of view.

Each scan of the data set was first annotated by one or two
radiologists of the Pisa center of the Italung-CT trial. Each
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radiologist first performed a blinded review and identified
the location of all abnormalities. For each suspect nodule,
regardless of the size, the radiologist annotated the location
and the diameter, as measured with electronic caliper. After
the blinded review, 23 scans, separately annotated by two
radiologists, were reviewed by the same two radiologists,
who agreed on the nodules that were to be considered suspi-
cious for cancer. The 23 scans were also reviewed by two
experienced radiologists of the Ospedale Vito Fazzi (Lecce,
Italy), who repeated the same procedure. The test set used to
evaluate the performance of our CAD system includes all the
nodules annotated by the radiologists of both institutions on
the 23 scans in the unblinded reviews. All the nodules with
diameter greater than or equal to 3 mm identified by one or
two radiologists in the remaining 109 scans were used as
training/optimization set. The numbers of nodules in the
training set and in the test set were 176 and 45, respectively.
The average nodule diameter and its standard deviation on
the whole data set were 4.7 and 1.3 mm, respectively. The
optimization of all the free parameters of the classification
system was made on the training set, while the test set was
only used for the evaluation of the system performance.

I.B. The LIDC data set

The CAD system was also tested using the scans provided
by the Lung Image Database Consortium (LIDC)
consortium, % a publicly available database of thoracic CT
scans collected to promote the development of CAD systems
and the comparison of their performances. Although our
CAD system has been more specifically designed for thin
slices CT scans, the test on the LIDC database is useful as a
comparison with other systems on a public database. Further-
more, since each nodule larger than 3 mm in the LIDC da-
tabase is described in detail by a set of radiologic character-
istic, the performance of the CAD on different types of
nodules can be studied.

Currently, 84 CT scans are available from the LIDC da-
tabase, acquired using different types of CT scanners, single
or multislice, with voltages between 120 and 140 kVp, x-ray-
tube current between 40 and 422 mA, and slice thickness
between 1.25 and 3 mm.

Each scan is provided together with its annotations by
four experienced radiologists (each from a different institu-
tion), who identified the location and radiological character-
istics of all the nodules and other anomalies larger than 3
mm in diameter, as well as the location of nodules smaller
than 3 mm. Each radiologist performed first a blinded review
of the scan, followed by an unblinded review with the infor-
mation provided by the other radiologists available. No
forced consensus was imposed. The annotations of all four
radiologists in the unblinded review are available with the
database. Only nodules larger than 3 mm were considered in
this work.
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lll. METHOD

llLA. Isosurface triangulation

Given a density distribution w(x,y,z), the isosurface cor-
responding to the value u; is defined as the set of points that
satisfy the equation w(x,y,z)=u;. Such equation defines a
surface that separates volumes with density greater than
from volumes with lower density. A discrete representation
of the isosurface can be obtained by approximating it by a set
of small triangular facets. Such a procedure is called isosur-
face triangulation and the representation obtained in this
way is called isosurface triangulated model. Such models are
widely used for volumetric data representation and analysis.
One of the most popular algorithms for isosurface triangula-
tion is the marching cube algorithm,27’28 based on a division
of the data volume in elementary cubes, followed by a stan-
dard triangulation inside each cube. In the original formula-
tion, the marching cube algorithm makes use of 15 basic
triangulations, and a total of 256 elementary triangulations is
obtained from the basic ones by rotations, reflection, conju-
gation, and their combinations. The original formulation of
the algorithm suffers from well-known problems of connec-
tivity among triangles of adjacent cubes, solved in various
ways.zg_31 We developed a variant of the marching cube al-
gorithm that makes use of 21 basic triangulations, as shown
in Fig. 1(a). Triangles of adjacent cubes are always well
connected in this approach. Compared to other solutions, it is
relatively simple and does not require substantial modifica-
tions of the original formulation of the algorithm; only the
look-up table for the basic triangulations is changed.

The set of triangles yielded by the triangulation algorithm
is divided into its connected components by forcing two tri-
angles into the same component when they have at least one
edge in common. In this way, the whole isosurface, which, in
general is disconnected, is divided in a set of connected sur-
faces.

The surface-triangulation algorithm is complemented by
an algorithm for the extraction of all the voxels inside each
connected surface. In general, it is not trivial to write an
efficient and robust algorithm for determining whether a
point lies inside a closed triangulated surface.”® In our ap-
proach, the volume inside each connected surface is ex-
tracted using a standard flood-fill algorithm,33 starting from a
seed voxel lying inside the surface, using a six-neighbor
scheme and a simple bottom threshold inclusion rule (i.e., a
neighboring voxel having a face in common with at least one
voxel of the growing region is included in the growing re-
gion itself if its density is higher than w;). The basic trian-
gulations in Fig. 1(a) are chosen in such a way that the set of
voxels whose center lies inside a connected surface is the
same set obtained by the flood-fill algorithm with the six-
neighbor scheme. A set of tools for extracting statistical in-
formation on each connected surface and on the enclosed
volume (surface area, volume, average and maximum den-
sity inside it, etc.) was implemented.

The robustness of the triangulation algorithm and its re-
lated tools was tested on the whole training set. As an ex-
ample, Fig. 1(b) shows a triangulated model for the isosur-
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FiG. 1. (a) Basic combinations for the marching cube algorithm. Black
circles represent voxels inside the isosurface. A standard triangulation of the
surface is performed within each cube. All possible combinations are ob-
tained from the fundamental ones by rotations and reflections. (b) Example
of application of the isosurface-triangulation technique to a juxta-pleural
nodule detected in a low-dose multislice lung CT scan. An isovalue of —400
in Hounsfield units has been used for the triangulation. A skeleton represen-
tation has been used in order to outline the triangle mesh.

face delimiting a juxta-pleural nodule. A skeleton
representation was used in this case in order to outline the
triangular mesh.

lll.B. Lung segmentation

The lung segmentation was performed using a method
similar to those described in Refs. 34 and 35. The density of
the lung parenchyma and that of the pleural surface of the
chest wall are very different: about —700 and 0 in Houn-
sfield units (HU), respectively. The isovalue used to separate
them, optimized on the training set, was u;=—500 HU. Fig-
ure 2 shows an example of application of this technique. A
mask for the lung parenchyma is obtained by flood filling the
volume inside the isosurface. Since juxta-pleural nodules are
connected to the pleural surface of the chest wall, they are
not included in this mask. In order to identify them as ROls,
a morphological closure opelration36 is applied to the paren-
chyma mask, as shown in Fig. 3. An N-layer dilation is ap-
plied to the mask. The dilation also has the effect of smooth-
ing the surface, removing high-curvature regions such as
juxta-pleural nodules. The number of layers, i.e., the thick-
ness of dilation, should be large compared to the nodule
radius, and small compared to the radius of curvature of the
pleural surface of the chest wall. The value N=10 in voxel
units was empirically selected. An N-layer erosion is thus
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FiG. 2. Example of application of the isosurface-triangulation and connected
component analysis to lung segmentation. An isovalue of —500 in Houn-
sfield units has been used for the triangulation. The surface separating the
lung parenchyma from the chest wall is identified as the connected surface
having the negative volume of largest magnitude.

applied, which basically brings the surface back to its origi-
nal size, with high-curvature regions being removed. The
eroded mask is merged with the original image by deleting
all the voxels outside the mask. In this way, juxta-pleural
nodules are included in the image obtained, while the chest
wall is excluded. This simple approach works well far from
the hilar region of the lungs and from the region where the
two lungs are connected to each other. Lung segmentation
can be improved by taking special care for such regions.37

l1l.C. ROI selection

The region of interest (ROI) selection procedure consists
in identifying regions in the parenchyma mask that can con-
tain suspect lung nodules. The isosurface-triangulation
method is generally suitable to accomplish this task. Using
this approach, the ROIs are represented by the collection of

Erosion
PR

FiG. 3. Morphological closure operation used to separate juxta-pleural nod-
ules from the pleural surface of the chest wall: A mask for the lung paren-
chyma is obtained by flood filling the volume inside the isosurface separat-
ing the lung parenchyma from the chest wall; a 10-layer dilation is applied
to the mask, removing high-curvature regions such as juxta-pleural nodules;
a 10-layer erosion is thus applied, bringing the surface back to its original
size, with high-curvature regions being removed; the eroded mask is merged
with the original image by deleting all voxels outside the mask. In this way,
juxta-pleural nodules are included in the image obtained, while the chest
wall is excluded.
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FIG. 4. [(a) and (b)] Three-dimensional views of isosurfaces corresponding
to a nodule connected to a blood vessel for thresholds of —350 and —300 in
Hounsfield units, respectively. [(c)—(e)] Axial, sagittal, and coronal view of
the same nodule.

the connected surfaces corresponding to a given isovalue or,
equivalently, by the connected volumes inside them.

Since the nodule density is higher than that of lung paren-
chyma, the surface representing their border can be recon-
structed by setting a proper intermediate isovalue. Internal,
isolated nodules are easily identified by this simple criterion
since they correspond to connected volumes above the
threshold. Juxta-pleural nodules will also correspond to con-
nected volumes above the threshold, as long as the lung seg-
mentation works well. However, the lung segmentation
sometimes leaves part of the pleura inside the volume of
interest, especially in high-convexity regions. Juxta-pleural
nodules in these regions will remain connected to part of the
pleura. In addition, regardless of the segmentation perfor-
mance, filtering effects imply that a layer along the pleural
surface of the chest wall stays inside the volume of interest,
as its density is higher than the parenchyma average density.
If the threshold is too low, juxta-pleural nodules will be con-
nected to this layer. Furthermore, internal nodules are not
always isolated, as they can establish connections with the
blood vessels. Figures 4 and 5 show some examples of nod-
ules connected to the blood vessels, segmented using differ-
ent threshold values. If the threshold is too low, these nod-
ules appear as connected to the vessels, showing up as a
single big ROI. On the other hand, the threshold must not be
too high. If it becomes higher than the density of a nodule,
part of this nodule will be lost and its volume will be under-
estimated. In the extreme case when the threshold is higher
than the maximum density inside the nodule, it will be com-
pletely lost. The threshold selection is always a trade-off be-
tween the need to separate nodules from other structures and
the requirement of not loosing part of the nodule itself. Tests
on real cases show that there is no single threshold suitable
to all nodules. Possible solutions to the problem of threshold
optimization could be based on adaptive thresholds. How-
ever, such approaches must deal with the problem that the
value of some features (volume, surface, roundness, etc.)
critically depends on the threshold itself. A multithreshold
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(a) (b)

.

() (d)

FiG. 5. Three-dimensional views of the isosurfaces corresponding to two
nodules connected to a blood vessel, one segmented at the thresholds of
—350 and —300 in Hounsfield units [(a) and (b), respectively], the other
segmented at the thresholds of —250 and —150 in the same units [(c) and
(d), respectively].

approach for the automated detection of lung nodules in CT
scans was first proposed by Armato et al.*® The authors ap-
plied 36 Gy level thresholds to the segmented lung volume.
For each threshold, they identified contiguous structures with
associated gray levels greater than the threshold and ob-
served that single structures identified at lower gray-level
threshold value can disassociate into multiple smaller struc-
tures at higher threshold values. A structure is identified as a
nodule candidate if its volume is smaller than a predefined
value. For each nodule candidate, a feature vector is calcu-
lated for the ROI corresponding to a single threshold value,
the one in which the volume criterion was first satisfied. In
this sense this method is similar to adaptive threshold ap-
proaches.

The solution explored in this work is a complete multi-
threshold analysis. First, the images are filtered by a three-
dimensional Gaussian filter, with o=1 in pixel units. This
value is kept low so as to avoid the suppression of small
nodules. Although the filter removes details of the nodule
border shape, it has the positive effect of reducing the signal
in the connections between the nodule and other structures,
such as the vessels and the chest wall, while keeping the
signal high in the nodule core. After this preprocessing stage,
the threshold is varied from a minimum to a maximum value
in a wide range, and the ROI selection is performed for each
value in this range. In order to follow the evolution of a ROI
when the threshold increases, we need to match ROIs corre-
sponding to neighboring thresholds. Each ROI at a given
threshold is completely included in some ROI at the neigh-
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FI1G. 6. Schematic example of the treelike structure of the correspondence
between ROIs in the multithreshold analysis. The circles represent the ROIs,
while the segments represent correspondence between ROIs at neighboring
threshold. Threshold values are in Hounsfield units. A MROI, such as the
one represented by full circles, is defined as a path on one of these trees,
which starts from a terminal ROI and ends up on the root ROL

boring lower threshold. However, this correspondence is not
one-to-one. There are different possible cases:

(1) Only one ROI at the higher threshold corresponds to the
ROI at the lower threshold;

(2) the ROI at the lower threshold splits itself as the thresh-
old grows, so the corresponding ROIs at the higher
threshold are more than 1; and

(3) the higher threshold is greater than the maximum den-
sity inside the ROI at the lower threshold, therefore this
ROI will have no correspondence in the higher thresh-
old; in this case the ROI is said to be a terminal ROI.

Therefore the connections among ROIs at neighboring
thresholds have a treelike structure (see Fig. 6). A multi-
threshold ROI (MROI) is defined as a path on this tree,
which starts from a terminal ROI and ends on the root ROI
(see Fig. 6). A MROI maps the evolution of a ROI as the
threshold varies from the minimum to the maximum value.
In the treelike representation, the MROI corresponding to a
nodule connected to a blood vessel and the MROI corre-
sponding to the vessel itself have the root ROI in common,
i.e., they belong to the same tree. However, in the case of
solid nodules, at some threshold value the ROI correspond-
ing to the nodule and the one corresponding to the vessel will
separate from each other, yielding two different branches of
the tree. Therefore, the nodule and the vessel correspond to
two different MROIs. For example, for the three nodules
shown in Figs. 4 and 5, branching occurs between —350 and
—300 HU [Figs. 4(a) and 4(b)], between —350 and —300
HU [Figs. 5(a) and 5(b)], and between —250 and —150 HU
[Figs. 5(c) and 5(d)], respectively. A single threshold lower
than —350 HU would not detect the three nodules: They
would not be separated from the vessels. On the other hand,
using a single threshold higher than —350 HU many low-
density nodules would be lost. Using a multithreshold
method, solid nodules connected to the blood vessels as well
as low-density nodules can be detected. The assumption that
there is a threshold that allows separation of the nodules
from vessels, however, is a limitation of the proposed
method: While this is generally true in the case of solid nod-
ules, the assumption may not hold for subsolid nodules.
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As described in Sec. III D, several features are computed
for each MROI as functions of the threshold. Some of them,
such as volume, surface, and roundness, critically depend on
the threshold. The MROI representation provides much more
information than the ROI representation. The feature func-
tions associated with blood vessels and with different types
of nodules show different behaviors. The task of learning
how to distinguish nodules from other structures via the be-
havior of the feature functions is assigned to the classifica-
tion system.

lIl.D. Feature extraction

Some ROI features are used as input to the classification
system: volume, roundness, maximum density, mass, and
principal moments of inertia. The volume V and the surface S
are computed via the triangulated model of the ROI surface.
More specifically, the surface is defined as the sum of the
surfaces of all triangles of the triangulated model; the vol-
ume is computed using the method described in Ref. 39. The
Ry (Ry) radius of a sphere with the same volume (surface) of
the ROI are defined as follows:

<3v)”3 /'S

Ry=|—1| , Rg=+/—.

v 41 s 47

The ROI roundness is defined as the ratio

Ry
Roundness = —,
R
which is a real number in the [0,1] range. This ratio is the
square root of conventional sphericity (7'3(6V)*3/S). In or-
der to avoid errors due to discretization in roundness calcu-
lation, the volume is computed on the triangulated model
(using an algorithm for computing the volume inside a poly-
hedron) rather than simply counting the number of voxels
inside the ROI surface and multiplying it by the voxel vol-
ume. Such errors can be relatively large, particularly when
the ROI contains a small number of voxels.
The mass, the center of mass, and the inertia tensor are
computed using standard formulas. The mass and the center
of mass are defined as

EkN,l My
S e
where the index k runs over all the voxels inside the ROI
surface, my, is the density associated with the voxel k (in HU)
times the voxel volume (in mm?), i is equal to 1, 2, and 3 for
x, y, and z, respectively, and r;; is the position vector of the
voxel k center (in mm). The inertia tensor is defined as
N

2
I ;= > my(ry 8= TriTh))
=1

with r,’c,i=rk,i—R,~ being the position vector of the voxel k
center with respect to the center of mass. The moment of
inertia tensor has been diagonalized so as to find the three
principal moments of inertia /;, I, and /5. The maximum
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FiG. 7. Volume and roundness of a MROI corresponding to an internal,
isolated nodule, plotted as functions of the threshold. When the threshold
approaches the maximum intensity of the ROI, the volume decreases
abruptly to zero. Roundness has a high value in the whole range.

density is defined as the maximum value of the density as-
sociated with all voxels inside the ROI surface (in HU).
Lung nodules are considered to be significant if their di-
ameter is at least 3 mm. Their shape is roughly spherical,
therefore their roundness must be close to 1 and their three
principal moments of inertia should be similar. Many ROIs
obtained from the ROI selection procedure are due to noise
in the image. However, their volume and density are gener-
ally lower than those of the actual nodules. Other ROIs cor-
respond to blood vessels. Their volume can be very large, but
their roundness is generally much lower than that of the nod-
ules, and the principal moment of inertia corresponding to
the axis parallel to the vessel is generally much smaller than
the other two. In the MROI approach, each feature is a func-
tion of the threshold. The volume of MROIs corresponding
to isolated nodules shows a simple behavior (see Fig. 7): It
starts from a value of the order of 10> mm? for the lower
threshold and decreases slowly as the threshold increases,
until the threshold approaches the maximum intensity, and
the volume abruptly decreases to zero. The roundness value
is high in the whole range. The behavior of the same func-
tions for an internal nodule connected to the blood vessels is
peculiar, as shown in Fig. 8. For a low threshold the nodule
appears as connected to the vessels and is part of a single,
very big ROI with a volume of about 10° mm?. Its round-
ness, being mostly influenced by the blood vessels contribu-
tion, is quite low. As the threshold increases, the nodule
separates from the vessels at a certain critical value and the
ROI volume abruptly decreases to a value of the order of
10> mm?. At the same time, the roundness will rapidly in-
crease. Figure 4 shows a three-dimensional view of the iso-
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Fic. 8. Volume and roundness of a MROI corresponding to a nodule con-
nected to the blood vessels, plotted as functions of the threshold. For a low
threshold nodule and vessels are segmented as a single ROI having large
volume and low roundness. Above some critical threshold, the nodule is
separated from the vessels; therefore, the volume decreases abruptly to a
lower value and the roundness increases abruptly to a higher value.

surface corresponding to the same nodule, for thresholds of
—350 and —300 HU, together with axial, sagittal and coro-
nal view of the nodule.

Figures 9(a) and 9(b) show, for all the test set ROls, the
scatterplots of the volume versus the roundness for thresh-
olds of —400 and 0 HU, respectively. The dots represent
false positives (FPs), while the stars represent the ROIs cor-
responding to lung nodules. Some nodules are connected to
the blood vessels at the lower threshold value (see also Fig.
4), thus they do not appear in Fig. 9(a). On the other hand,
the higher threshold is greater than the maximum density of
some nodules, which do not appear in Fig. 9(b).

lIl.LE. Classification

The MROI features as functions of the threshold can be
used as input to a classification system. The size of the input
vector is equal to the number of features times the number of
sampling steps in the analyzed threshold range. For this
study, six sampling points, from —500 to 0 HU with a sam-
pling step of 100 HU, were used. If a ROI disappears at a
threshold smaller than or equal to 0 HU, the corresponding
elements of the feature vector are set to zero.

The classification system is based on ANNs. The number
of MROIs obtained by the ROI selection procedure is large:
46 024 in the whole training set. Since the training-validation
procedure used by the classification system does not work
properly if the number of negative examples is much greater
than the number of positive examples, it is important to
downsample the negative examples without altering their
distribution in the feature space. For such purpose a two-
dimensional SOM***! was used. The SOM divides the ex-
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FIG. 9. [(a) and (b)] Scatterplot of the ROI volume versus roundness evalu-
ated for a threshold of —400 and 0 in the Hounsfield units, respectively. The
dots represent false positives, while the stars represent the ROIs correspond-
ing to lung nodules.

amples in representative classes, each output node of the
SOM corresponding to a class. The number of classes cannot
be too small, since all types of false positives should be
represented by some class; neither it can be too large since
each class should contain a statistically significant number of
examples. Considering the size of our database, a compro-
mise was found to be 10 X 10 output nodes, which yields an
average of 460 negative examples per output node. The set
of negative examples is downsampled to 1060 cases by tak-
ing about 2% of the cases from each representative class, i. e.
from each output node of the SOM. The positive examples in
the training set are 176.

The classification stage is done using a feedforward neu-
ral network with one hidden layer and logistic activation
function. The number of input neurons is 43 (seven features,
each one evaluated for six threshold values, plus the maxi-
mum density inside the MROI). Two output neurons are
used, corresponding to a positive or to a negative response.
The network was trained through the standard back-
propagation learning algorithm with momentum.*" A leave-
one-out cross validation procedure‘m’42 was used on the train-
ing set for the evaluation of the root mean square error,
which was used for the optimization of the number of learn-
ing epochs and of the number of neurons in the hidden layer.
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TaBLE 1. Total number of nodules in the Italung-CT test set with diameter
greater than or equal to 3 and 4 mm and ROI selection procedure sensitivity.
The lower and upper limits of 95% confidence intervals are evaluated
through a method described by Wilson (Ref. 43) with correction for conti-
nuity.

Nodule diameter ~ Total No.

(mm) of nodules True positives ROI selection sensitivity
=3 45 42 0.9370%

=4 30 30 1.00_ 14
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TaBLE II. CAD system sensitivity evaluated on the Italung-CT test set for
nodules with diameter greater than or equal to 3 and 4 mm at false positive
rates of 10 and 4 per scan.

Nodule size

(mm) FP/CT True positives Sensitivity

=3 10 38/45 0.84*0%
4 32/45 0.71%512

=4 10 29/30 0.97:0%
4 24/30 0.80712

The optimal number of hidden neurons was found to be 11.

lil.LF. Large nodules

While all nodules in the Italung-CT data set are relatively
small, the largest diameter being 9.85 mm, some of the nod-
ules in the LIDC data set are not. In particular, for 16 nod-
ules the diameter is larger than 20 mm. Although generally
the recognition of the larger nodules is relatively easy for the
classification system, their segmentation requires special
care, particularly when they are connected to the chest wall.
The number of layers used in the morphological closure pro-
cedure, optimized for small nodules, can be insufficient for
larger nodules, which may not be correctly segmented. For
this reason, big nodules were treated separately. The segmen-
tation procedure is the same as described for the smaller
nodules, except for the following:

(a) The images are filtered by a two-dimensional Gaussian
filter for suppressing the signal in the connections be-
tween nodules and other structures, while keeping it
high in the solid part of the nodules. The sigma value
of the filter, optimized for the big nodules, was 4 in
pixel units.

(b) The optimal number of layers used in the two-
dimensional morphological closure operation for the
detection of big nodules was 40.

(c) The use of an ANN classifier was not appropriate for
big nodules because the number of positive examples,
i.e., the number of nodules larger than 20 mm, is too

Sensitivity

0 5 10 15 20
FPs/CT
Fic. 10. FROC curves of the CAD system for the nodules of the Italung-CT

test set having diameter greater than or equal to 3 mm (solid line) and 4 mm
(dashed line).
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low. Therefore, the candidates were selected with two
simple thresholds on the ROI volume and roundness.

The whole CAD system is thus composed by two sub-
systems, one specialized in the detection of nodules larger
than 20 mm, the other specialized in the detection of smaller
nodules. The global false positive rate is the sum of the rates
of the two subsystems.

IV. RESULTS
IV.A. Results on the Italung-CT data set

The ROI selection procedure applied to the 23 CTs of the
test set yielded a total number of 12 043 ROIs, 42 of them
being true positives, 12 001 false positives. Since the number
of nodules with diameter greater than or equal to 3 mm lo-
cated by the radiologists in the test set is 45, the sensitivity of
the ROI selection procedure is 93%. The diameter of the
three nodules that are not detected by the ROI selection pro-
cedure is smaller than 4 mm. The average number of FPs per
CT at this stage is 522. Table I shows the sensitivity of the
ROI selection procedure on the test set nodules with diam-
eter greater than or equal to 3 and 4 mm.

The ROIs detected by the selection procedure are used as
input to the ANN classifier. Figure 10 shows the FROC
curves for the test set nodules with diameter greater than or
equal to 3 and 4 mm. The sensitivities of working points,
selected on the FROC curves, are reported on Table II.

Sensitivity

‘‘‘‘‘‘

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

—— Agreement level 4
---- Agreement level 3

o2 | oo Agreement level 2 i
- Agreement level 1
0 ‘ ‘ ‘ ‘ : : : ‘
o 2 4 6 8 10 12 14 16 18

FPs/CT

Fic. 11. FROC curves of the CAD system for the nodules of the LIDC data
set with different agreement levels and diameter greater than or equal to
3 mm.
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TasLE III. CAD system sensitivity on the nodules of the LIDC data set with
diameter of =3 mm obtained at a false positive rate of 4 per scan at differ-
ent agreement levels.

True positives Sensitivity
Agreement level 1 67/148 0.45%0:08
Agreement level 2 63/107 0.5970%
Agreement level 3 55/77 0.7170%
Agreement level 4 30/38 0.79j8:};

IV.B. Results on the LIDC data set

The CT scan parameters and the procedure used to con-
struct the reference standard for the LIDC data set are differ-
ent from the ones used for the Italung-CT database. There-
fore, a new optimization and training procedure of the
classification system were necessary. One of the differences
that mostly affected the CAD performance was the slice
thickness. Since the slice thickness of the scans in the LIDC
database is not constant, it was used as an additional input
feature for the classification system.

After finding the intersections among the nodules identi-
fied by different radiologists, the nodules larger than 3 mm
were divided in four subsets: 41/30/40/37 nodules annotated
by one/two/three/four out of four radiologists, respectively.
These numbers show a substantial inter-reader variability, re-
flecting a difference in opinions even among experienced
radiologists. Each of these subsets has been divided ran-
domly in two subgroups containing almost the same number
of nodules, one used as training set, the other as test set.
Subsequently, the role of the training and test sets was ex-
changed and the whole procedure was repeated. In this way,
the CAD system was tested on all the nodules of the data set.
There are different ways to build a reference standard from
the annotations of the four radiologists. We used the method
suggested by Opfer et al.*' and called ground truth with
agreement level j the list of all the nodules marked by at least
Jj of the 4 radiologists.

Figure 11 shows the FROC curves of our CAD system for
the nodules with different agreement levels and diameter
greater than or equal to 3 mm. Table III shows the CAD
system sensitivities on the four ground truth lists, obtained at
a false positive rate of 4 per scan. Clearly, the sensitivity is
higher for nodules identified with higher consensus among
the four radiologists.

V. DISCUSSION

Figure 12 shows the CAD system sensitivity on the LIDC
data set, obtained at a false positive rate of 4 per scan and
averaged over the four radiologists readings, as a function of
some of the nodule characteristics. A strong correlation be-
tween the CAD sensitivity and the radiologist perception of
subtlety, i.e., difficulty of detection, can be noticed from the
histogram in Fig. 12(a). Figure 12(b) shows that the CAD
sensitivity for nodules that are suspicious for malignancy is
higher than for nodules that are unlikely to be malignant.
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Figure 12(c) shows that the CAD performance on solid nod-
ules is higher than on part-solid and nonsolid nodules.

Table IV compares the results of other CAD systems to
the one described in this work. An objective comparison is
difficult because the minimum diameter of the nodules, the
number of slices per CT, the size of the databases, and other
CT scan parameters are different. References 15 and 19 pro-
vide sensitivity and number of false positives per CT similar
to the ones that we obtain for nodules larger than 4 mm.
However, it should be observed that the number of scans in
the database used in Ref. 19 is too small to divide it in a
training/validation set and an independent test set.

Sahiner er al.” reported the performance of two algo-
rithms, a region growing method and an active contour
model, on a test set including 33 scans from the University
of Michigan and 29 scans from the LIDC database. Their
analysis only includes internal nodules having a diameter of
=3 mm that were not ground-glass opacities. The combina-
tion of the two algorithms shows a sensitivity of 70% for
nodules with agreement level 1 at a false positive rate of 1.5
per scan. However, since juxta-pleural nodules and ground-
glass opacities have been excluded from this analysis, the
results cannot be easily compared to the ones we obtain.

Opfer et al*! presented a CAD system with a validation
study on the LIDC data set and discuss how the performance
of their algorithm is influenced by the choice of the underly-
ing ground truth. For nodules having a diameter of =4 mm
that have been simultaneously confirmed by all four radiolo-
gists (agreement level 4) their CAD system shows a sensi-
tivity of 91% at a false positive rate of 4 per scan. The
superior performance of their system may be related to the
use of a special filter, based on distance transformation,
which identifies all structures similar to circles or half
circles, and to the use of highly discriminating features.

From the histogram in Fig. 12(c), it appears that the per-
formance of our system would improve if we could increase
the detection rate of nonsolid and part-solid nodules. The use
of a more specialized filter in the preprocessing step and of
additional features, such as the ones used by Opfer et al.,
would probably improve the system sensitivity. On the other
hand, most of the false positives detected by our system are
due to imperfections of the lung segmentation in regions
where the pleural surface of the chest wall is irregular or
have a high curvature. Therefore, in order to reduce the false
positive rate without decreasing the sensitivity, the lung seg-
mentation procedure should be improved.

VI. CONCLUSION

A complete CAD system for lung nodule detection has
been developed and its performance evaluated with a data set
of low-dose multislice CT scans. The advantage of a multi-
threshold surface-triangulation approach was explored using
a treelike structure to follow the evolution of a ROI at vary-
ing threshold, introducing the concept of MROI and building
the input to the classification system by computing features
as sampled functions of the threshold value.
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FiG. 12. Sensitivity of the CAD system evaluated on the LIDC data set at a false positive rate of 4 per scan as a function of some of the nodule characteristics.
Each distribution is averaged over the four radiologists readings. (a) Sensitivity as a function of nodule subtlety, i.e., difficulty of detection. (b) Sensitivity as

a function of nodule malignancy. (c) Sensitivity as a function of nodule texture.

The system achieved sensitivities of 84% and 71% at
false positive rates of 10 and 4 per scan, respectively, for
nodules with a diameter greater than or equal to 3 mm on the
Italung-CT test set, and a 79% sensitivity at 4 false positives
per scan on the LIDC data set for nodules with a diameter
greater than or equal to 3 mm that were annotated by all four
radiologists. In our opinion, other nodule segmentation meth-
ods, different from surface triangulation, could benefit from
using a similar multithreshold approach by using other criti-

cal parameters instead of the surface-triangulation threshold,
for instance, the parameter used for the halting criterion in
some active contour models or the threshold on the merit
function used for the inclusion rule in some region growing
methods.
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