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a b s t r a c t

3-D object segmentation is an important and challenging topic in computer vision that could be tackled

with artificial life models.

A Channeler Ant Model (CAM), based on the natural ant capabilities of dealing with 3-D

environments through self-organization and emergent behaviours, is proposed.

Ant colonies, defined in terms of moving, pheromone laying, reproduction, death and deviating

behaviours rules, is able to segment artificially generated objects of different shape, intensity,

background.

The model depends on few parameters and provides an elegant solution for the segmentation of 3-D

structures in noisy environments with unknown range of image intensities: even when there is a partial

overlap between the intensity and noise range, it provides a complete segmentation with negligible

contamination (i.e., fraction of segmented voxels that do not belong to the object). The CAM is already

in use for the automated detection of nodules in lung Computed Tomographies.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Ant Colony Models are computational simulations of ant
colonies that use the behaviour rules observed in nature to
design cooperation/competition strategies to be put in place by
virtual agents: the emergence of a global smart behaviour and a
purposive self-organization can then be exploited to solve difficult
problems.

Successful applications of Ant Colony Models range from opti-
mization techniques [1,2] to swarm robotics [3]. The use of Ant-
Colonies in image processing, pattern recognition and object
segmentation (usually tackled with classical algorithms such as
region growing, active contour and shapes models, watershed tra-
nsformations, genetic algorithms, etc.) started in the nineties [4].
ll rights reserved.

: +390116699579.
Many solutions for 2-D image segmentation, thresholding and
processing were developed but few of them were used in a
3-D environment [5–8]. Ant Colony Models are intrinsically 3-D,
since all the activities performed by an ant super-organism, like
forging, larvae feeding, nest building, etc. take place in a 3-D
environment [9].

The approach we propose, called Channeler Ant Model, is a
stable and elegant solution that requires little tuning (parameter-
wise), provides an excellent performance on images with different
dynamic ranges and noise levels and opens a multitude of
possibilities for further research. The present work was carried
on within the MAGIC-5 Project [10], focused on the development
of algorithms for the automated detection of anomalies in medical
images. The Channeler Ant Model discussed here is being adopted
as a tool for the analysis of lung CT scans [11–13], as a way to
segment and remove the background coming from the bronchial
and vascular trees in the lungs, which is the biggest source of false
positive findings in the automated search for nodules.

www.elsevier.de/pr
dx.doi.org/10.1016/j.patcog.2009.10.007
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2. Methods and literature

2.1. Modelling ants

In [1] Bonabeau et al. clearly define the difference between
modelling and designing a biological model, i.e., between a true
understanding of the ant social behaviour and a mere implemen-
tation of some aspects of the natural systems. According to the
authors, when thinking about modelling one tries to uncover and
understand what happens in an ant colony and how its emergent
behaviour really appears. Every aspect of the model must be
supported by biological reasoning. Many aspects of the colony
emerging behaviour like path optimization when forging for food
[14,2], raiding patterns formation [15], labour and task division
[16], cemetery organization [17], etc. can be modelled.

2.2. Ants in a 3-D environment

Social insects form a decentralized super-organism composed
of many cooperative, independent, sensory-motor equipped
components that are spread in the environment and respond to
external stimuli based on local information that can come either
from the environment itself or from other nest mates. The
perception of the colony is the sum of perceptions of all its
members, while the colony behaviour is the sum of all the
interactions between the ants and the environment and between
themselves. All the activities like forging, cemetery building,
larvae feeding and brood sorting take place in the 3-D world
perceived by the individuals [9].

One of the most complex tasks performed by social insects is
nest building. Ants were initially thought to be anthropomorphic,1

as if each individual had a 3-D blue print of the global structure
embedded into its memory: based on that hypothesis, ants should
be able to optimize their decisions and thus the nest complexity
would be the result of the complexity of the insect behaviour. The
observation of colonies showed that ants are not anthropo-
morphic and the amazing nest complexity is the consequence of
the variety of stimuli to which the individual ants are subjected
and respond. At the beginning of nest building, the behaviour and
the type of response to the stimuli is very simple and unique: an
ant carrying a pebble that finds a rock on its path will drop its load
and start searching for similar items, so that piles grow bigger,
attract more ants and the construction evolves. In a following
phase, the types of stimuli diversify and so does the type of
possible responses, leading to job diversification and to an
increased nest complexity.

However, even though ants are not anthropomorphic, the nest
blue-print does exist: not at the level of each individual but as a
template found in the environment in the form of physical and
chemical heterogeneity that helps organizing the building
activities. The process, called stigmergy2 and introduced by
Grasse in [18], alongside self-organization helps ants deal with
3-D structures.

2.3. Ants in images

Chialvo and Millonas [4] introduced one of the simplest and
most efficient models of trail forming when the ants are not
moving in a closed boundary and are not suppressed by other
behaviour rules. They compared the trail leaving technique with
1 Having human characteristics.
2 Method of communication in emergent systems in which the individual

parts of the system communicate with one another by modifying their local

environment.
the cognitive map patterns from brain science, with the difference
that ants leave their trails in the environment while the
‘‘mammalian cognitive maps lie inside the brain’’.

Based on the above paper, Ramos and Almeida [19] developed
an extended model where a constant population of ants is
deployed in a digital habitat (i.e., an image) that the insects
perceive and in which they move: they showed that ants are able
to react to different types of digital habitat, achieving in the end a
global perception of the image as the sum of the local perceptions
of the single colony members.

In the model evolution [20,21] a mechanism that self-regulates
the population by using the concepts of ageing, death and
reproduction in the ant colony is described. The work of Ramos
and Almeida is at the root of the model we present in this paper.

Bocchi et al. [6] proposed an image segmentation method that
makes use of an evolutionary swarm-based algorithm in which
different populations of individuals compete to occupy the 2-D
image to be analysed. The comparison to other techniques
showed an improvement in the segmentation of noisy images.
Zhuang et al. proposed in [5] a swarm intelligence technique for
feature extraction in image processing, based on Dorigo’s ant

colony system [1] and the perceptual graphs [22] that represent
the relationship between adjacent points in the image. The ant

colony system is used to extract just the perceptual graph that
afterwards becomes the basis for a layered model of a machine
vision system used for the feature extraction. A method for
hierarchical image segmentation, represented by a binary tree, is
introduced in [23], while in [7] Malisia et al. used ant colony
optimization for image thresholding. Another method for image
segmentation using behaviour agents that breed and diffuse
according to the image intensity is found in [8]. George and
Wolfer [24] presented a swarm intelligence based method for the
counting stacked symmetric objects in digital images.

As seen from the above papers, the literature provides many
examples of ant colonies implementation in 2-D images based on
different algorithms: ant colony systems, perceptual graphs and
binary trees. Unfortunately none of them were scalable or could
be applied in 3-D imaging with unknown image intensity range.
3. The Channeler Ant Model

The deployment of ant colonies in 3-D images could in
principle be very effective whenever complex connected struc-
tures, with several ramifications of different size and intensity,
must be identified and reconstructed, as long as a general model
with few requirements on parameter tuning is designed and
validated on images with known properties (different signal to
background ratio and intensity range).

The development of the Channeler Ant Model (CAM) was
triggered by the idea of using it for the automated search of
suspect nodules in lung computed tomographies: the CT analysis
makes use of the CAM to segment the bronchial and vascular tree
and remove it from the CT before the search for nodular structures
in the image with a dedicated filter or with the CAM itself [11,12].

In a way the CAM could be considered an extension of existing
models [4,19,20], but it also introduces important new features.

Chialvo and Millonas [4] make use of the concept of
probabilistic directional bias. The probability of a voxel to become
the ants destination is increased when the ant keeps its direction
and such effect is convoluted with the pheromone density in the
definition of a new ant location. Moreover, the ant population is
static (there is no evolution driven by birth and death of ants) and
the initial positions are selected randomly. The model described
in [4] was adopted as a starting point by Ramos and Almeida [19],
who introduce a correlation between the quantity of pheromone
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that is released and the pixel intensity, a feature that is also
exploited by the CAM and allows the search for different image
features depending on the choice of the pheromone release
function. Ramos et al. [20] improve the model presented in [19]
by adding a self-regulation mechanism to the ant population.
However, the probability to produce an offspring is related to the
number of neighbour ants, a feature that does not optimize
the environment exploration: by definition, ants that lead the
exploration do not have the highest number of neighbours. The
probability of dying increases with the lifetime, but unless it does
it rapidly enough it can cause an overcrowding in certain image
volumes, since no pheromone saturation mechanism that forbids
destinations is implemented. In the CAM, the energy parameter
that regulates the lifetime of ants changes according to the local
properties of the environment and defines a range within which
ants live: above the higher threshold they reproduce, below the
lower one they die. With that approach, the forward leading ants

probability of reproducing can be high and the environment
exploration is faster.

Existing models, although extendable to a 3D environment, did
not provide a satisfactory set of rules for the use of ant colonies in
images as complex as lung computed tomography. The Channeler

Ant Model makes use of basic concepts introduced by other
models [4,19,20] but it changes their implementation in a
relevant way:
�
 the ants are not set at random positions but start the
exploration from an anthill;

�
 the moving rules only depend on the pheromone content at

destination, i.e., there is no directional bias;

�
 the lifetime is regulated by a double threshold in energy to

define reproduction and death and the number of ants
generated at each offspring depends on the pheromone
configuration in the surroundings;

�
 the ant colony behaviour is related to the original image

features only via its influence on the pheromone release rules;

�
 the exploration is guaranteed by a pheromone saturation

mechanism, that also provides an intrinsic normalization. The
maximum pheromone content of a voxel is set by a user-
defined threshold and does not depend, in the well-explored
volume, on the original image range of intensity. Moreover,
whenever the pheromone content of a voxel is above threshold,
it becomes a forbidden destination.

3.1. The colony members

The behaviour of ants, partially derived from [4,19], is
described in terms of four modules: the moving rules, the
pheromone laying rules, the reproduction/death rules and the
description of the ant response to anomalies (deviating behaviour).

Ants explore (i.e., ‘‘live in’’) a 3-D spatial environment
described in terms of the properties (position, intensity) of
discretized VOlume ELements (voxels) and their life cycle is
defined in terms of atomic time steps, during which ants move
from one voxel to a neighbour.

So, at time t an ant k is in voxel vi; after one life cycle
(time tþ1) it will move to voxel vj. In a 3-D environment, a voxel

has 26 first order neighbours according to Moore’s neighbouring
law [25].

Two types of individuals live in a colony: the queen and the
worker ant.

The queen acts as an observer, performing tasks related to the
colony coordination such as deciding when an ant dies or new
ants are born.
The workers carry out the nest building (i.e., the objects
segmentation): they move in the habitat and lay pheromone
according to its properties and the model rules. Therefore, the
following perspectives are possible:
(1)
 the Designer’s (Planner)—it envisages the final purpose of the
algorithm, which by means of the ant colony tries to achieve
the reconstruction of 3-D objects by defining a set of rules that
drive the colony evolution: it therefore plans the bigger

picture, specifically by means of choosing the laying rule that
correlates the released pheromone amounts to the intrinsic
environment properties (i.e., the voxel intensities);
(2)
 the Queen’s (Observer)—from its point of view the final
purpose of the algorithm is not interesting nor foreseen; the
important point is the supervision of the colony evolution.
The queen has a global view of the entire habitat but it cannot
interfere, change it in any way nor directly tell the working
units what they are supposed to do, which direction to
choose, etc. In other words, the queen can see the bigger picture

but is not allowed to set specific aspects or change the colony
rules. The queen implements the pheromone map analysis
(see the following sections) and therefore makes use of the
global knowledge to decide whether voxels are part of the
segmented structure or not.
(3)
 the Ant’s (Executor)—it is local, as the single ant only perceives
the local environment properties at a given time unit and
follows the behaviour rules. The ant has no idea of the global
colony status, evolution or goal: it focuses on completing its
given tasks with no regard to the emergent behaviours that
might appear in the overall colony.
3.2. The ant colony rules

The behaviour of worker ants is defined by a set of rules that
specify how they move in the environment, how much pher-
omone they release before moving to another location, when they
reproduce or die, how they react to anomalies (e.g., when they
reach the environment boundaries): the modelling of each of
these rules is discussed in the following subsections.

The environment is essentially defined by the voxel image
intensities, which can be thought of as related to the amount of
available food for the colony, which should be progressively
consumed when the number of visits increases. This mechanism,
required to make the colony evolve and explore the environment,
is implemented in a complementary way: whenever the limit to
the maximum number of visits (NV ) in a voxel is reached, the voxel

is no more available as a destination.

3.2.1. The moving rules

Randomness is an important factor in self-organization as it
can assure a good balance between following a well established
path and the probability of finding new and better paths,
triggering the exploration of new regions of the environment.

Like in nature, in the CAM the random component associated
to the way an ant walks is taken into account for the choice of the
future destination.

However, the choice of the direction for a step must also take
into account the colony global knowledge of the environment,
which is provided by the amount of pheromone already released
is a given position (sj). The pheromone laying rules are analysed
in the following, but the meaning of a pheromone message is the
same as in nature: a large amount of pheromone in a candidate
destination must correspond to a high probability of becoming
the actual destination.
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Ants make one step per life cycle: therefore an ant k located in
voxel vi at time t must select its destination. The choice is made
according to the following rules:
�
 only the n¼ 26 first order neighbours are destination candi-
dates;

�
 for each voxel neighbour vj, a probability Pij for it to be chosen

as destination is computed;

�
 if an ant is detected in vj, Pij is set to zero;

�
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Fig. 1. The average pheromone release as a function of the cycle number: per cycle

(full) and integrated (dashed). The integrated average release becomes more and

more stable as the colony evolves and is therefore suitable for use as a normali-

zation factor.
once a probability of becoming the future destination is
assigned to each candidate, one of them is selected by a
roulette wheel algorithm.

The probability Pij that a candidate destination is chosen is
defined as follows:

Pijðvi-vjÞ ¼
WðsjÞP

n ¼ 1;26WðsnÞ
ð1Þ

where WðsjÞ depends on the amount of pheromone in voxel vj and
the denominator is a normalization factor.

The pheromone-related term WðsjÞ, taken from [4], depends
on the osmotro-potaxic sensitivity b (the larger it is, the larger the
influence of the pheromone trail in deciding the ant’s future
destination) and on the sensory capacity 1=d (if the pheromone
concentration is too high, it will determine the decrease of the
ant’s capability of sensing it):

WðsjÞ ¼ 1þ
sj

1þd � sj

� �b

ð2Þ

A random number selected in the (0,1] interval determines which
voxel is actually selected as destination.

3.2.2. Pheromone laying rules

According to the biological laws of ant colonies, before moving
to the future destination an ant k deposits in the voxel it is about
to leave a quantity of pheromone T, defined as [19]

T ¼ ZþDph ð3Þ

where Z is a small quantity of pheromone that an ant would leave
anyway and Dph, the differential quantity of the pheromone, links
the image properties to the pheromone habitat in which the ants
live. Its value is a voxel-intensity dependent function:

Dph ¼CðIÞ ð4Þ

The choice of the depositing rule, made at the Planner level, is very
important as it is related to the type of segmentation the ants are
going to perform. Some possible choices of Dph for an ant that
moves from voxel vi to vj with intensities IðviÞ and IðvjÞ are shown
below:

Dph ¼ const � IðviÞ ðRuleIÞ

Dph ¼ const � jIðviÞ � IðvjÞj ðRuleIIÞ

Dph ¼ const �

Pn0

l ¼ 1 IðvlÞ

n0
ðRuleIIIÞ

where n0 is the total number of neighbours including the starting
voxel: n0 ¼ nþ1¼ 27 since only first order neighbours are
considered.

Rule I, in which the ant lays a quantity of pheromone directly
proportional to the intensity of its starting voxel, is used for the
segmentation of objects on a background (e.g., the case of lung
computed tomographies); Rule II, with a pheromone release
proportional to the intensity derivative, can be used for border
detection (e.g., the search for the pleura in lung CTs); Rule III

smooths the effect of the intensity fluctuations and can therefore
be used for segmenting objects in a noisy environment whenever
the noise fluctuates more than the signal. In the results section,
only Rule I is addressed: however, it is important to remark that,
just by changing the pheromone deposition rule, it is possible to
enhance different image features.

After depositing the pheromone according to the implemented
rule, the ant moves to the selected destination voxel.

3.2.3. The life cycle—reproduction and death

Ants, like all the living creatures, live for a finite amount of
time. The life cycle is regulated by a parameter called energy [21],
which is assigned at birth with a default value:

e0 ¼ 1þa ð5Þ

The energy variation for ant k must take into account the
properties of the environment, which are defined by the deposited
amount of pheromone Dk

ph for the current cycle and by the
average amount of pheromone per step the colony has deposited
since the beginning of its evolution, used as a normalization factor
(/DphS): Fig. 1 shows that the integrated average, used for the
normalization, converges to a constant factor and is far more
stable than the average per cycle. Therefore, the energy variation
for ant k is defined as follows:

ek
tþ1 � e

k
t ¼ � a � 1�

Dk
ph

/DphS

 !
ð6Þ

The energy range is defined by a lower limit, the death energy eD

and an upper limit, the reproduction energy eR: an ant with
energy ek

t will die whenever ek
t oeD and give birth whenever

et 4eR. In that case, the ant energy is reset to the default starting
value e0. The ant life cycle duration is therefore a function of the
ratio between the rate of the energy variation (a) and the
amplitude of the allowed energy range (eR � eD), all of it
modulated by the properties of the environment.

The number of ants that are generated when a reproduction
takes place (Noffspring) must be related to the local properties of the
environment, known through the pheromone map generated by
the colony, and take into account the number of free destination
voxels (nf ).

The local properties of the environment are evaluated by
smoothing the pheromone map at v0 ¼ vðx0; y0; z0Þ and replacing T

with T5, the pheromone release evaluated according to the
selected deposition rule when the voxel intensity I is replaced
by I5, defined as the average intensity in the voxel’s 125 second
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order neighbours:

I5ðv0Þ ¼
1

125

X
xi ;yi ;zi ¼ �2;2

Iðx0þxi; y0þyi; z0þziÞ ð7Þ

For each image, T5;min and T5;max are defined as the smallest and
largest values of T5, respectively. The number of generated ants
can be an integer in the ½0;26� interval, since only first order
neighbours are allowed as positions for the generated ants. The
actual number Noffspring is determined assuming that it linearly
depends on T5, with Noffspring ¼ 0ð26Þ corresponding to the
minimum (T5;min) and maximum (T5;max) taken by T5, respectively:

Noffspring ¼ 26 �
T5ðviÞ � T5;min

T5;max � T5;min
ð8Þ

In case Noffspring is larger than the number of free neighbours nf , it
is set to nf .

3.2.4. The deviating behaviours

Some conditions, not compatible with the above-described
rules, require the definition of the allowed deviating behaviours. In
particular:
�
 when an ant is fully surrounded by fellow mates and any
possible destination voxel is unreachable, the ant is killed;

�
 when an ant reaches the border of the habitat it is killed.

3.3. Deploying the model

The Channeler Ant Model, discussed in the previous section,
can be easily translated into an algorithm for 3-D image
segmentation, which hereafter is referred to as the CAM algorithm.
It is worth pointing out that the CAM algorithm output is not a
segmented image but rather a pheromone map, which can be
considered an effective preprocessing of the 3-D volume for the
actual segmentation, which is discussed in the following and it is
actually provided by the analysis of the pheromone map. The CAM

algorithm input–output interface is the following:
Input:

(1) InputImage [A 3-D image, i.e., a collection of N 3-D voxels
vi]

(2) Nv [Maximum number of visits for each voxel]

(3) NA [(Initial) number of Ants in the colony]

(4) vAH [Anthill position, i.e., the voxel where the colony starts
building the nest]

Output:

(1) PheromoneMap: a 3-D volume that stores the amount of
pheromone released by the ants in each voxel vi of the
original image.

Some auxiliary data structures are to be defined in order to
understand the pseudo-code, shown in Fig. 2:
Auxiliary data structures:

(1)
 NumVisits: an array that stores the number of times an ant

has visited a specific voxel.

(2)
 Ant: a dynamic data structure used to conveniently

manage ants births and deaths in the colony.

Each ant is described by its position AntðviÞ and energy
EnergyðAntðviÞÞ.
Auxiliary functions:

(1)
Fig. 2. The Channeler Ant Model segmentation algorithm Pseudo-code.
EvaluateCandidateDestination ðvi; vjÞ: implements Eqs. (1)

and (2).
DifferentialPheromone ðInputImage; viÞ: implements Eq. (4)
on the basis of the selected laying rule of Section 3.2.2.
(2)
(3)
 SelectDestination ðPijÞ: selects the actual destination from

the probability map Pij.
(4)
 Move ðAntðviÞ; vjÞ: moves the ant from voxel vi to vj.
(5)
 UpdateEnergy ðAntðviÞ;DphÞ: implements Eq. (6), requiring

the differential amount of pheromone deposited in the
current cycle.
According to the pseudo-code (Fig. 2), the model deployment goes
as follows:
�
 initially, at t¼ 0, all the voxels are pheromone free: no
information is available to the ants for their evolution;

�
 an initial ant-hill is chosen in a voxel that belongs to the

structure to be segmented and N0 ¼ 26 ants are released in all
directions (i.e., in all the anthill neighbours) with default
energy;

�
 the ants start moving around in the environment according

to the above described CAM rules and deposit pheromone;

�
 the selected rule for depositing pheromone is defined with the

goal of segmenting high intensity regions: Dph ¼ const � IðviÞ,
where IðviÞ is the intensity of the voxel on which the ant stands;

�
 a cycle is finished when all the ants in the population have

made one move;

�
 after a cycle is completed, the ants energies are updated and

compared to eD and eR;
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bridge.
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�
 if a death is triggered then the ant is killed and the number of
members in the population updated;

�

200

if an offspring takes place, the newborn ants are placed
randomly in free neighbouring voxels with default energy and
the colony population is updated;
150
�

Y

the colony lives and moves until no more ants are alive or until
the user-predefined number of cycles has been completed;

�

X
0 50 100 150 200 250

0

50

100

Fig. 4. The 2-D artificial snake used for the model validation.

Table 1
Artificial objects properties: the 3-D (2-D) image size in the X, Y, Z directions

(NX ;NY ;NZ ), the number of voxels in the image (NTot) and the number of voxels

belonging to the generated objects (NObject).
once the colony evolution stops the 3-D pheromone map is
stored and analysed.

4. Testing the model

4.1. The artificial images

The task of a CAM colony is to provide 3-D pheromone maps of
the explored volume, to be used as a starting point for the
segmentation of structures. In order to assess the model
performance, it is important to study its results on a set of
artificially generated 3-D objects with different shape, known
properties (intensity distribution, background level), in three
groups of increasing complexity:
Object NX NY NZ NTot NObject

�

Highway 80 80 80 512000 6800
Class-A set: homogeneous intensity (I¼ I0) objects with zero
background;
Scale 80 80 80 512000 10824
�

Knot 80 80 80 512000 16659

Toroid 80 80 80 512000 30332

Yoyo 80 80 80 512000 45116
Class-B set: objects with heterogeneous intensity extracted
from a Gaussian with mI average and sI standard deviation and
zero background;
1-Arm-Bridge 240 80 80 1536 000 56677
�

2-Arm-Bridge 240 80 80 1536 000 57522

Snake (2-D) 256 256 1 65536 5292
Class-C set: objects with heterogeneous intensity extracted as
for the Class-B set and a background noise extracted from a
Gaussian with mnoise average and snoise standard deviation.

The implemented shapes, some of them shown in Fig. 3, were
selected to test the model behaviour in different conditions: the
highway tests that ants truly channel in 3-D; the scale, knot, toroid

and yoyo test the channelling through an object that constantly
changes orientation; the bridges define the colony reaction to thin
multi-branch structures. Moreover, an example of a 2-D object
(the snake, shown in Fig. 4) was also selected to demonstrate that
the model performance in 2-D and 3-D is comparable, as it is
expected according to the model design.

Each object was simulated in three versions, according to the
specifications of classes A;B and C. Table 1 summarizes the size
and the total number of voxels of the different generated 3-D (2-D)
images as well as the number of voxels that are actually part of the
artificial object.
4.2. The lung CT images

As quickly addressed in the Introduction, the model was
developed having in mind its use as a module of a lung Computer
Assisted Detection tool, aiming at the identification of nodules in
lung computed tomographies. In particular, the CAM is respon-
sible of the segmentation of the bronchial and vascular trees in
the lung, so as to be able to remove them from the original images
and search for nodules in conditions that reduce the number of
false positive candidates.

Although it is beyond the goal of this paper to discuss in detail
the performance on real lung CTs, which requires a careful
definition of the radiological truth according to medical protocols,
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an example of pheromone map obtained on a real lung CT will be
shown in the following. However, the definition of a metric to
quantify the CAM performance in lung CTs is not addressed in this
paper, as it is strongly related to the radiologists’ diagnosis and
the far from obvious definition of a gold standard. A discussion of
the problem, as well as a very detailed discussion of the CAM (and
other algorithms) results on lung CTs as a function of the different
types of nodules, is found in [11,12].

4.3. Parameters optimization

The colony evolution is a function of several parameters that
describe:
�
 the way an ant computes the perceived pheromone quantity
from a voxel, based on Eq. (2) that contains two parameters:
b and d. In [19] the authors discovered the emergence of well
defined networks of trails with b¼ 3:5, d¼ 0:2, the values we
decided to adopt.

�
 the way an ant deposits pheromone in the voxel it is about to

leave, set according to Eq. (3). The default quantity of
pheromone that an ant leaves behind (Z), which only certifies
a voxel was visited, must be small; it is defined in such a way
that it is always negligible if compared to pheromone releases
relevant for the definition of a voxel as segmented:

Z¼ 0:01 ð9Þ

the way the ant energy is updated, according to Eqs. (5) and
�
Table 2
The properties of the simulated object sets.

Object set Class A Class B/C Class C

Intensity Average Std. dev. Baseline Noise

Set 1 1300 700 200 100 50

Set 2 1600 700 300 100 50

Set 2 1000 700 100 100 25, 50, 75, 100

Set 3 – 700, 1050, 1400 200 100 50
(6): a is a constant that ensures that each ant makes at least a
few moves before dying, while the scale factor that determines
how quickly the energy of an ant will increase or decrease,
thus deciding how fastly the reproduction and death take
place, is defined in terms of the local habitat properties.
The critical issue is related to the necessity to find a
satisfactory equilibrium between two different effects: the
capability to explore new, pheromone free volumes and the
minimization of the so-called tunnelling, which causes ants
reach unconnected structures. For example, in the case of the
Toroid-B, the coils of the object are so close to one another that,
unless the model parameters are properly tuned, they can be
reached by ants that tunnel from a neighbouring coil through
an empty (i.e., low intensity) volume.
The maximum number of steps travelled by an ant in a
pheromone free region is given by

Nsteps ¼ ðeR � eDÞ=a ð10Þ

In order to minimize tunnelling, Nsteps must be small. In the
present work, the eD, eR and a parameters were set to 1.0, 1.3,
0.2, respectively: therefore, in pheromone free areas, no more
than two steps can be travelled.

The limitation to the number of visits a voxel can receive (NV ),
introduced in order to make the colony evolve in time along the
structures to be segmented, is not to be considered a model
parameter. Its upper limit defines the speed with which
structures are segmented, not the capability of ants to segment
them.

The lower limit must take into account that the number of
visits a voxel receives is also related to the exploration of its
surroundings: since the definition of the ants future destination is
probability-based, NV must be large enough to allow a statistically
significant number of moves to all the neighbours of any visited
location.

In other words, NV should be voxel-dependent and its value
must be inversely related to the pheromone release in that voxel,
which in turn depends on the selected laying rule, so that in areas
with small depositions a larger number of visits is allowed,
increasing the statistical significance of the results. With NV

ranging in the 40–120 interval, a generic vi to vj step takes place
about 1.5 (4.5) times in high (low) deposition regions, which
proves to be enough for a satisfactory segmentation. For any given
image, the pheromone deposition in each voxel can be easily
determined: assuming it ranges in the whole image from Tmin

to Tmax, the maximum number of visits for a voxel is normalized

as follows:

NV ¼ 40þ80
T � Tmax

Tmin � Tmax
ð11Þ

In case the pheromone laying rule also depends on the ant
destination, T is meant to be the release averaged over all the
possible destinations.
5. Results

Once the model parameters were optimized, the CAM was
deployed on 3-D artificial objects belonging to classes A;B;C.

The choice of the simulated object properties (intensity and
background) was driven by the goal of testing the CAM
performance as a function of the object intensity (average and
standard deviation) and background dispersion (i.e., noise).
Therefore, different object sets were generated, as summarized
in Table 2.

Each time an ant colony life cycle is completed, a pheromone
map of the original image is available for the analysis, as
well as a map of the number of visits each voxel received:
Fig. 5 shows some samples of 2-D slices for the different object
shapes (the full object for the 2-D snake), taken from Set 1/Class-C

objects.
The analysis of pheromone maps for the definition of the

segmentation performance will be described in detail later on.

5.1. Colony evolution

The colony population evolution is an interesting marker of the
dynamical behaviour during the exploration process: Fig. 6 shows
the evolution for the Set 1/Class C 1-Arm-Bridge and toroid. The
evolution pattern is usually simple, with a triangular-like shape.
However, when the anthill is placed along a thin long structure, as
it is for the 1-Arm-Bridge, the peak structure appears later, since
the population growth is prevented until the ants reach the
thicker parts of the object.

The number of cycles before the colony extinction and the
average population are summarized in Table 3 for the different
object classes of Set 1. The colony life duration depends on the
object complexity and size as well as on the anthill position (for
example, the 1-Arm-Bridge is the last to be completed because the
anthill is placed on the thin arm structure). However, an average
trend can be observed if the same objects of class A, B and C are
compared: the extinction is slightly quicker for objects with
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Fig. 5. Channeler Ant Model results on some Set 1/Class-C objects: (a) 2-D slice of the original image, (b) 2-D map of voxels visits, (c) 2-D section of the pheromone map.

Row 1: the highway, row 2: toroid, row 3: yoyo, row 4: 2-Arm-Bridge, row 5: 2-D snake.
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Set 1/Class C 1-Arm-Bridge and toroid as a function of the cycle number. The

standard pattern is triangular-like, with the exception of the 1-Arm-Bridge, where

the location of the anthill along the thin bridge limits the population increase until

the thicker part of the object is reached.

Table 3
The number of cycles the colony lives (NCyc) and the average number of ants per

cycle (/NAS) for class A, B and C objects.

Object Class A Class B Class C

NCyc /NAS NCyc /NAS NCyc /NAS

Highway 141 8043 156 7867 162 8863

Scale 206 9365 224 9279 245 10061

Knot 143 20338 148 19394 147 22440

Toroid 139 34242 152 34347 142 40463

Yoyo 241 27050 254 27497 269 29039

1-Arm-Bridge 357 24338 367 25406 418 25683

2-Arm-Bridge 240 37051 251 37870 294 37090
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Fig. 7. Number of ants as a function of the cycle number for the segmentation of

the 2-Arm-Bridge starting from different anthill positions. The ant colony evolution

pattern is different, as expected, but the sensitivity and the exploration level are

compatible and show that the CAM performance does not depend on the anthill

location.
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uniform intensity (class A), while it takes a little longer (about 10%
more cycles) when the intensity is not uniform (class B) and
another 5–10% more when a Gaussian noise is added (class C).
Also, the average number of ants in the colony increases by
10–15% when adding the noise.

These results are no different than what expected, given the
model rules. The colony average population essentially depends
on the pheromone levels, which in turn depend on the image
voxel intensities: the change from uniform to variable (and lower,
on average) intensity causes a slower population increase, and
therefore requires a larger number of cycles to complete the
segmentation.

The addition of a noisy background increases the average life
of ants, since small pheromone quantities can be released outside
the object and therefore the ant energy decrease outside
the object is slower, turning into a larger average number of
living ants.

The colony evolution is also a function of the anthill location:
depending on the local object properties (i.e., the topology in the
surroundings of the anthill), the number of ants in the colony
shows different patterns, as seen in Fig. 7. The peak in the ant
population is always reached when the thick arm structures are
being explored. When the anthill is located on (or close to) the
thin bridge connecting the two arms, the population reaches a
plateau corresponding to the bridge exploration, and increases
again when the ants reach the arms.
5.2. Object segmentation

As already remarked, the ant colony is deployed and evolves
until its extinction, generating a pheromone map which repre-
sents the global knowledge of the environment. In order to
evaluate the CAM performance with respect to the object
segmentation, a definition of when voxels are to be considered
as part of the object must be provided. We chose to use an
inclusion condition that, applied to the pheromone map, generates
a binary image: whenever a voxel contains more pheromone than
a predefined threshold value (Phth), it is classified as segmented.

Therefore, the results are threshold dependent and, in
principle, shape and set/class dependent.

The following analysis will show that the CAM provides
uniform results as well as the possibility of defining a common
threshold for the pheromone map analysis, which makes it
suitable for the analysis of complex structures with a priori

unknown intensities.
In order to quantify the model performance in the segmenta-

tion the following quantities were defined:
�
 Sensitivity: S¼NR=NO, i.e., the ratio between the number of
segmented voxels, evaluated with the pheromone map analy-
sis, that actually are part of the object and the number of voxels

in the original object;

�
 Exploration level: E¼NV=NO, i.e., the ratio between the number

of segmented voxels and the number of voxels in the original
object;

�
 Contamination: C ¼NC=NO, i.e., the ratio between the number

of segmented voxels that do not belong to the original object
and the number of voxels in the original object, after the
pheromone map analysis.

According to the definitions:

C ¼ ðNV � NRÞ=NO ¼ E� S ð12Þ

S; E and C are function of the threshold value: however, if the mo-
del in general enough, they shall not be object shape dependent.

Fig. 8 shows the exploration level (E) and sensitivity (S) for the
Set 1/Class A, B and C highway as a function of the selected
pheromone threshold. For class A and B objects, the exploration

level and the sensitivity are coincident, since the pheromone
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Table 4

Pheromone threshold Phth and contamination C corresponding to S¼ 0:999 (left

side); pheromone threshold Phth and sensitivity (S) corresponding to C ¼ 0:01

(central part); pheromone threshold Phth and contamination C corresponding to

S¼ 0:99 (right side).

Object S¼ 0:999 C ¼ 0:01 S¼ 0:99

PhTh C PhTh S PhTh C

Highway 16900 0.52 30700 0.996 37200 0.0004

Scale 16700 0.64 31300 0.995 37400 0.0007

Knot 18200 0.41 31500 0.995 36700 0.0011

Toroid 17500 0.42 30100 0.995 36000 0.0007

Yoyo 16300 0.48 30700 0.995 36500 0.0007

1-Arm-Bridge 17100 0.48 31300 0.994 37300 0.0007

2-Arm-Bridge 17900 0.41 30900 0.995 37000 0.0009

Snake 2D 13900 0.34 28300 0.995 35300 0.0013
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release that takes place when the voxel intensity is zero is so small
that falls below the smallest threshold value. It is interesting to
observe that adding the noise does not affect the segmentation
capability (the class B, C sensitivity curves are almost the same)
while, as expected, it introduces a contamination, caused by the
pheromone release in voxels that do not belong to the object.

Given the trend shown in Fig. 8 and the correlation between
Phth, S and C, three points, defined by the conditions S¼ 0:999,
C ¼ 0:01 and S¼ 0:99, were selected as representative of the CAM
performance. Table 4 shows, for the different artificial objects of
Set 1/Class C, the values of Phth and C corresponding at S¼ 0:99 on
the left side, Phth and S at C ¼ 0:01 in the central part and Phth and
C at S¼ 0:99 on the right side. The threshold interval between the
values at C ¼ 0:01 and S¼ 0:99 defines the range corresponding to
a satisfactory performance.

Since the sensitivity and contamination are evaluated at each
pheromone threshold value, it is also possible to study their
correlation with a more general approach. The curves obtained by
varying the pheromone threshold and plotting the sensitivity as a
function of the contamination for the different shapes on the Set

1/Class C objects (Fig. 9) show that the CAM performance is
independent of the shape within a sensitivity range of 0.001 and
therefore the model is general enough to segment different
objects with similar sensitivity and contamination levels.

It is then essential to study the model behaviour as a
function of the intensity range and the noise level. The correlation
between the sensitivity and the contamination for the Set 2/Class C

highway at different noise levels, shown in Fig. 10, shows—as
expected—that the performance improves as the noise level
decreases.

The noise level is the most important parameter in discriminat-
ing the CAM performance with respect to other algorithms. Since
the CAM output (i.e., the pheromone map) is analysed with a simple
thresholding, a comparison to a simple thresholding on image
intensity provides a measurement of the improvement introduced
by the CAM. Fig. 11 shows the results for the two approaches on a
highway with different noise levels: the larger the noise, the better
is the CAM result with respect to the simple thresholding.

That is somehow expected, since in the CAM the channelling
features allow the rejection of high intensity voxels that are far
from the structure being segmented.

In order to compare the CAM results to a more sophisticated
and performing algorithm, a region growing-based (RG) approach
[26] was selected, because of its similarities with the CAM in
exploring connected structures in a 3-D environment.

Basically, the RG algorithm segments structures starting from a
seed point (equivalent to the CAM anthill) and providing inclusion

rules that allow to deterministically decide whether a voxel should
be considered as part of the analysed structure or not. Fig. 12 shows
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Fig. 11. Correlation between the sensitivity and the contamination for the Set 1/Class C highway (average intensity 700, standard deviation 200) at different noise levels, for

the CAM with simple threshold analysis of the pheromone map and a simple thresholding algorithm on the image intensity.
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the comparison for the different noise levels: it is interesting to
observe that, while the performance of the CAM decreases (i.e., the
contamination increases) with the noise, the RG result is very
stable. Such a behaviour is strictly related to the fact that the RG
decision is made once and for all while exploring the original image,
while the CAM progressively stores information in the pheromone
map which is analysed after the colony extinction. The RG does not
suffer such from a noise increase, since its exploration in a given
direction abruptly stops when just one voxel is below threshold. On
the other hand, the CAM behaviour is regulated by the ant energy,
which allows exploration ranges outside the object that increase
with the noise level. Overall, the CAM performance is better when
the noise is lower (since the RG anyhow misses a fraction of the
object voxels) while the RG is better at higher noise values.

Such differences can be overcome by introducing a slightly
more sophisticated analysis that takes into account for the CAM
(RG) the voxel pheromone amount (intensity) and its average in a
3� 3� 3 box around it. The results (Fig. 13) show the
performance of the CAM when only the average pheromone
quantity is taken into account and of the RG when both the voxel

intensity and its average with first order neighbours are used for
thresholding. The improvement is remarkable, to the extent of
being extremely close to a 100% sensitivity for all the noise values
in a much lower range of contamination values (note that also the
x-axis scale differ in Figs. 11–13).

Both the RG and the CAM, therefore, prove to be very
performant. However, there is an interesting CAM feature that
could make it preferable to RG. While the RG analysis parameters
(i.e., the lower and upper thresholds that are used by the voxel

inclusion rules) operate on the image intensity and therefore
must be tuned whenever the original intensity range changes, the
CAM analysis parameter (i.e., the pheromone threshold) does not
depend on the intensity range, as seen in Fig. 14, that shows the
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Fig. 13. Correlation between the sensitivity and the contamination for the Set 1/Class C h

the CAM with simple threshold analysis of the averaged pheromone map and a double

averaged it is meant that both the pheromone quantities and the image intensities

neighbours).
effect of an increasing signal values at constant noise on the
exploration level and sensitivity for the Set 3/Class C 2-Arm-Bridge.
The distribution shows that there is no effect on E and S at low
pheromone thresholds, while the plateau with negligible
contamination and full segmentation progressively extends: in
other words, as long as the pheromone threshold is selected for
the worst signal to noise ratio, the segmentation capability is not
affected by increasing the signal range. The CAM behaviour as a
function of the noise at a given average intensity (or, in other
words, as a function of the average intensity to noise ratio) shows
that, unless the noise levels are very high, it is possible to define a
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range of pheromone threshold values for which the segmentation
is fully satisfactory.
5.3. Lung CT analysis

Although it is not easy to define a quantitative performance
when the CAM is deployed on lung computed tomographies, it is
nevertheless interesting to assess its behaviour on a qualitative level.
When analysing a CT, the anthill is set at the root of the bronchial
and vascular trees, and the colony environment is defined by the
voxels accepted by the lung volume segmentation module. The right
and left lungs are analysed separately, since they are by definition
topologically disconnected. The pheromone release rule is defined in
such a way that the release is proportional to the difference between
the voxel intensity and the minimum intensity in the lung volume.
Fig. 15 (left) shows the correlation between the pheromone level
and the original intensity of each voxel. The straight structures
correspond to different numbers of visits to a voxel during the
colony evolution. Most of the voxels lay at the bottom, not having
been visited by the ants and therefore containing no pheromone. For
some of them, however, the intensity can be very large: these voxels
are the best candidates as belonging to a nodule, which is most of
the time a high intensity object topologically disconnected from the
bronchial and vascular tree. Fig. 15 (right) shows the comparison
between the intensity distribution of the voxels with I4300 units in
the original image (dashed line) and after the CAM deployment and
pheromone analysis (full line): as compared to the original image,
the number of accepted voxels has been reduced by a large factor,
particularly for medium intensities (300o Io500).

The result of the CAM deployment on a slice of a CT containing a
nodule to be detected is shown in Fig. 16: after resetting the voxels
with a pheromone content above threshold (b), the original image
(a) turns into the so-called subtracted image (c), where the nodule to
be detected is much easier to spot without false findings.

The subtracted image becomes the input object to the filtering
stage that looks for nodule candidates and classifies them. A
detailed discussion of its features and results is beyond the scope
of this work: it is addressed in [11,12], which describe the goal
and the results of the ANODE09 challenge [13].
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6. Conclusions and prospects

Artificial ant-colonies have been used in image processing for
over a decade, but most of the existing algorithms and models
deal with 2-D image segmentation, thresholding or processing
problems. Some approaches treating and using the full capabil-
ities of self-organization, trail forging and nest building in an ant
colony in 3 dimensions do exist. However, to our knowledge,
none of these try to model these capabilities in 3-D image
processing.

Since real-ants in nature perform unknown, uncharted object
recognition every day and they carry on 3-D object construction
in the activity of nest building, artificial ant colonies should be
able to do the same.

The Channeler Ants Model describes ants in terms or rules that
define their moving capabilities, the pheromone release, the life
cycle (birth, reproduction, death) and the deviating behaviours. It
proves to be suitable for a full segmentation of objects of different
shape, intensity range in a noisy background.

The property of channelling appears as an emergent behaviour
of the entire colony, which propagates in the 3-D image, its
population being controlled by the energy depletion, until the full
structure is explored and the colony extinguishes.

The Channeler Ant Model performance was successfully
validated on artificial images, without any parameter tuning
when the image or the environment properties changed.

Moreover, a preliminary analysis of lung computed tomogra-
phies shows that the CAM is suitable for use as part of a Computer
Assisted Detection tool for the automated detection of nodules in
the lung.
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