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A computer-aided detection �CAD� system for the selection of lung nodules in computer tomogra-
phy �CT� images is presented. The system is based on region growing �RG� algorithms and a new
active contour model �ACM�, implementing a local convex hull, able to draw the correct contour of
the lung parenchyma and to include the pleural nodules. The CAD consists of three steps: �1� the
lung parenchymal volume is segmented by means of a RG algorithm; the pleural nodules are
included through the new ACM technique; �2� a RG algorithm is iteratively applied to the previ-
ously segmented volume in order to detect the candidate nodules; �3� a double-threshold cut and a
neural network are applied to reduce the false positives �FPs�. After having set the parameters on a
clinical CT, the system works on whole scans, without the need for any manual selection. The CT
database was recorded at the Pisa center of the ITALUNG-CT trial, the first Italian randomized
controlled trial for the screening of the lung cancer. The detection rate of the system is 88.5% with
6.6 FPs/CT on 15 CT scans �about 4700 sectional images� with 26 nodules: 15 internal and 11
pleural. A reduction to 2.47 FPs/CT is achieved at 80% efficiency. © 2007 American Association
of Physicists in Medicine. �DOI: 10.1118/1.2804720�
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I. INTRODUCTION

Lung cancer has the highest mortality rate of all cancers all
over the world. In the U.S., 172 570 new cases and 163 510
deaths were reported in 2005.1 The survival rate is estimated
to be 14% after 5 years, with an increase up to 50% if the
lung cancer is detected at an early stage.2 The use of chest
computer tomography �CT� strongly improves the radiolo-
gists’ detection rate as well as the definition of the cancer
type.3 A CT exam consists of a series of 2D images �of about
150 MB when reconstructed with thin slice thickness� to be
visually examined. This task is particularly difficult and
time-consuming due to the fact that some nodules are hardly
distinguishable from nonpathological structures �e.g., bifur-
cations of the vascular trees� when examined slice-wise.
These facts have, in the last few years, encouraged the de-
velopment of computer-aided detection �CAD� for the auto-
mated detection of lung nodules in CT scans. A CAD system
could provide valuable assistance to the radiologists, and in
many cases its use leads to a remarkable improvement of the
detection rate at the cost of a low increase of the false posi-
tives �FPs�.4,5

A number of CADs have already been brought to the at-
tention of the scientific community. In order to give a brief
and noncomprehensive overview of the state of the art, here
we report some examples of CADs operating on CT scans.

In Ref. 6, a gray-level threshold routine is applied to both
the 2D sections of a CT scan for automated lung segmenta-
tion, and the 3D segmented lung volume for individual struc-
ture identification. Nodule candidates are categorized as nod-
ules or non-nodules by a combination of rule-based and
linear discriminant classifiers applied on a set of features
extracted from each candidate. A modified multilayer artifi-
cial neural network, capable of operating on image data di-
rectly, is applied to 63 low-dose CT scans �1765 slices� con-
taining 71 nodules: a detection rate of 80.3% is obtained with
0.18 FPs/slice, corresponding to 4.8 FPs/CT.

The CAD presented in Ref. 4 uses three-dimensional seg-
mentation involving attenuation thresholding, region grow-
ing, and mathematical morphology to identify the regions of
interest. The system labels these regions on the basis of a
model of lung nodules and relevant intrathoracic anatomy.
When applied to a set of eight low-dose CTs �40 slices/CT�
containing 22 nodules, the system achieves a detection rate
of 86.4%, with 2.64 FPs/CT.

The CAD system of Ref. 7 relies on a k-means clustering
technique for the segmentation of both the lung region and
the anatomical structures. Then, rule-based classifiers are de-
signed to distinguish lung nodules from normal structures
using 2D and 3D features. Linear discriminant analysis is
used to further reduce the number of FPs. A preliminary
study performed on 1454 slices from 34 CTs with 63 lung
nodules provides 84% �53 /63� efficiency, with
1.74 �2530 /1454� FPs/slice.

A template-matching technique based on a genetic algo-
rithm is proposed in Ref. 8. The genetic algorithm is used to
locate the target position in the image and to select an ad-

equate template image from several reference patterns for
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quick template matching. In addition, a template matching is
employed to detect the nodules on the lung wall area. After
the initial detection of candidates, 13 features are extracted
and used to reduce the FPs by means of a rule-based mecha-
nism. A number of the 557 sectional images are selected
from 20 clinical cases, and 71/98 �about 72%� are correctly
detected, with approximately 1.1 FPs/slice.

The approaches presented in Ref. 9 are based on the radial
gradient index. A database of 38 CT scans is used, compris-
ing 1953 sections and containing 82 nodules. For each CT
section, regions of high circularity are enhanced to improve
the contrast between nodules and nonpathological structures.
The application of filters prior to a linear discriminant clas-
sifier yields 70% sensitivity with 0.28 FPs/section.

Among the commercial CADs, ImageCheckerCT of R2
Technology Inc. �Sunnyvale, CA� is the first clinically vali-
dated system. The CAD works as follows: a series of
volume-centric segmentation steps is used to delineate nor-
mal from abnormal lung tissue. Geometric features, includ-
ing shape, elongation, size, spiculation, density, and others,
are computed for each suspected lesion. Following an ana-
lytical decision tree, the candidate lesion is given a likeli-
hood rating of representing a lung lesion. If this score ex-
ceeds a defined threshold, the CAD system marks the region
of interest �ROI� for further review. The use of this CAD
leads to improved detection as validated by independent
clinical studies: 26% reduction in missed actionable nodules,
with an average of 2 FPs per case, is observed in a multi-
reader ROC �receiver operating characteristic� study.5 In ad-
dition, the ImageChecker CT detects nodules of clinical sig-
nificance in 23% of multislice CT chest exams originally
read as having no nodules.10

As one can see, a variety of methods has been explored
with promising results, yet the problem of detecting lung
nodules in CT scans is still open and of great interest. In this
paper we present a CAD system for the detection of lung
nodules in a CT exam. This work has been developed in the
framework of the MAGIC-5 Project,11 which aims at imple-
menting CAD software for medical applications on a grid
infrastructure connection.12 The system is based on region
growing �RG� algorithms and a new active contour model
�ACM�,13 implementing a local convex hull �CH�, able to
draw the correct contour of the lung parenchyma and to in-
clude the pleural nodules, i.e., nodules near the pleura. The
CAD consists of three main modules: �1� lung parenchymal
volume segmentation; �2� nodule candidate detection; and
�3� FP reduction.

The paper is organized as follows. In the next section the
CT database is described. Section III is focused on the de-
scription of the two computational methods of image analy-
sis used in our CAD: region growing �RG� and active con-
tour model �ACM�. In Secs. IV–VI the CAD modules are
described in detail. Results and comments are provided in
Sec. VII.

II. THE CT DATABASE

Chest computer tomography �CT� is considered the best

imaging modality for the detection of lung nodules. In the
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last few years, low-dose CT scans were shown to be effective
for the analysis of the lung parenchyma,14 thus making pos-
sible the perspective of screening programs.

The database used in this study consists of 15 low-dose
CT �LDCT� scans recorded with a 4-slice spiral scanner So-
matom Plus 4 VZ machine, with the following settings: 140
kVp, 20 mA, 1.25 mm collimation, and 1 mm reconstruction
interval. The images were acquired at the Pisa center of the
ITALUNG-CT trial, which is the first Italian randomized
controlled trial for the screening of lung cancer. Each image
consists of a matrix of 512�512� �314±23� voxels: it
should be stressed that both the number of the voxels and
their longitudinal size depends on the patient size.

The scans contain 26 nodules: 15 internal nodules �i.e., far
from the pleura� and 11 pleural nodules �i.e., near the
pleura�. Figure 1 shows two typical examples of nodules
present in our database: pleural nodule �left� and internal
nodule �right�. The CT examinations were carried out inde-
pendently by two radiologists by means of slice-wise visual
inspection. The nodules were diagnosed according to the
ITALUNG protocol that considers as pathological, structures
of noncalcified nodules with a diameter greater than 5 mm,
up to a maximum diameter of about 14 mm. Hence, the
pathological structures searched by the radiologists of the
ITALUNG-CT trial are objects of volume V� �30, 800� in
terms of number of pixels. The presence of a nodule is
marked by a circle which completely encloses the nodule in
its median slice. The mean diameter of the nodules in the
whole database is d= �6.7±1.5� mm.

III. METHODS

In this section we give a general overview of the two
principal algorithms used in our CAD: region growing �RG�
and active contour model �ACM�.

III.A. Region growing

The RG is an image analysis technique that consists of
searching for connected regions of pixels satisfying a given
inclusion rule. The algorithm works as follows:

�1� A seed point is chosen and its neighbors are considered;
�2� If the neighbors satisfy the inclusion rule, they are in-

cluded in the growing region, otherwise they are ruled
out;

�3� All points included at a certain step become seed points

FIG. 1. Two typical examples of nodules present in our database: pleural
nodule �left� and internal nodule �right�.
for the following step;
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�4� The routine is iterated until no more points satisfy the
inclusion rule.

The main problem of a RG algorithm relies in the selection
of a proper seed point, which is usually done by hand. As our
aim is the implementation of an automated CAD system, the
seed point could be automatically selected �as in the nodule
candidate detection phase, Sec. V� as follows: a scan of the
3D matrix is carried out and the first voxel satisfying the
inclusion rule is chosen to start the growth. When the growth
is finished, the segmented region is removed from the image
and the matrix scan restarts to search for a new seed point.
This routine is iterated until no more seeds are found. In this
way, a number of not-connected regions satisfying the same
inclusion rule is obtained.

Different inclusion rules may be adopted. We use the fol-
lowing ones:

�1� Simple Bottom Threshold/Simple Top Threshold
�SBT/STT�: If the intensity I is greater/lower than a certain
threshold �, the voxel is included in the growing region:

I � � �SBT� ,

I � � �STT� .

�2� Mean Bottom Threshold/Mean Top Threshold �MBT/
MTT�: The intensities of the voxel and its 26 neighbors are
averaged; if the average �I� is greater/lower than the thresh-
old �, the voxel is included in the growing region:

�I� � � �MBT� ,

�I� � � �MTT� .

III.B. Active contour model

The active contour model �ACM�, first introduced in Ref.
15, is an image analysis technique used to define the con-
tours of complex objects. The focus of this technique con-
sists of positioning a closed curve, a spline, joining a number
of nodes, in a certain position of the image, and leaving it to
evolve until an equilibrium position is reached. The evolu-
tion of the spline is driven by both internal forces �generally
elastic forces� attracting �or repelling� the nodes to �or from�
one another, and external forces based on the image suitably
transformed into a potential or a force field. Different results
can be obtained depending on the initial position of the
spline and on the kind of transformation of the image. ACMs
are used in many fields as tracking of moving objects for
traffic monitoring,16 facial feature extraction,17 or, as in our
case, in medical image analysis for anatomical contour
selection.18

IV. LUNG VOLUME SEGMENTATION

The first step of the CAD system is the parenchymal vol-
ume segmentation. This step consists of two substages:

�1� Internal lung volume segmentation by means of a RG

algorithm;
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�2� Anatomic lung contour detection, to include both the
pleural nodules and the vascular tree inside the lung,
implemented slice-wise by the new ACM, called the
glued elastic band �GEB�.13

IV.A. Internal lung volume segmentation

The internal lung volume consists of air and a bronchial
tree that typically appears, in a CT slice, as low-intensity
voxels surrounded by high-intensity voxels corresponding to
the pleura �see Fig. 2�a��. This suggests segmenting the in-
ternal lung volume by means of a 3D RG algorithm. The
choice of the inclusion rule with the optimal threshold and
the selection of a proper seed point are of great relevance for
the best performance of the algorithm. Our choice is the
MTT rule that allows reduction of the “noise” of the low-
dose CT, thus obtaining a volume with quite regular con-
tours.

The threshold value �̄ is automatically selected with the
method adopted in Ref. 19; it is based on the gray-tone dis-
tribution of the CT voxels that typically shows two quite
distinct parts �see Fig. 3, obtained from one of the analyzed
CTs�: one containing air, lung parenchyma, trachea, and
bronchial tree; the other one containing vascular tree, bones,
muscles, and fat. The optimal threshold, set at the plateau
between these two regions, is selected as follows:

• The CT gray-tone histogram is divided into two regions
with equal number of bins and the mean values of the
bins in the two regions are computed;

• The previously computed mean values are averaged and
the bin having the intensity nearest to the new mean is
selected as the threshold to divide the histogram;

• The routine is iterated until the threshold bin does not
change anymore.

The seed point of the RG is automatically selected as the first

FIG. 2. �a� Original section of a CT scan: low-intensity �black� voxels cor-
respond to air and bronchial tree; high intensity voxels correspond to pleura,
fat, muscles, vascular tree, bones and, eventually, nodules. �b� Section of the
volume segmented by the MTT RG; an enlargement of the two lungs joined
together is displayed in the circle. �c� the same slice as in �b� with separated
lung sections, as displayed by the enlargement in the circle. �d� A section of
the working volume, obtained after the ACM contour detection.
voxel that satisfies the inclusion rule in a cubic region lo-
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cated as follows: the CT is divided lengthwise, thus obtain-
ing two parts of equal sizes; the center of the cube is posi-
tioned at the cross point of the diagonals of, say, the left part
�the choice of the right part would be equivalent�. In this
way, we are quite sure that the cubic region where the seed
point is searched is inside the lung for less than abnormal
anatomical deformities. Once this voxel is found, the growth
of the internal lung volume is started; otherwise, the search is
repeated in a greater cubic region until a voxel satisfying the
inclusion rule is found.

The volume thus segmented shows some slices with
joined lungs �see the magnified circle in Fig. 2�b��. To draw
the correct lung volume contour �see Sec. IV B�, it is neces-
sary that the two lung sections are separated in all slices. To
this purpose, a lower number of voxels should be included in
the growing region, along the contour of the sections where
the lungs are joined. This is achieved as follows:

�1� Starting from the top, the slices where the lung sections
are joined are found, and a 2D RG is carried out in each
slice with MTT inclusion rule and 1% decreased thresh-
old with respect to the initial value �̄.

�2� The threshold is decreased at the same rate in order to
include a lower number of voxels into the 2D growing
region, until the lung sections are disjoined.

The previously described routine is repeated for all slices
where the lung sections are joined. As an example, Fig. 2�c�
shows the result �see the magnified circle� of the above-
described routine when applied to the image displayed in
Fig. 2�b�.

Figure 4 shows another typical example of one slice of the
segmented region. It should be stressed that the volume thus
obtained includes the lung parenchyma, the bronchial tree,
and the trachea, while structures outside the lung, as bones,

FIG. 3. Gray-level distribution of the voxels of one of the analyzed CT.
Similar distributions can be obtained from the other CTs. The region seg-
mented by the RG algorithm refers to the lung parenchymal and the bron-
chial tree. The voxels corresponding to the background, though having an
intensity lower than the threshold �̄, are not included in the grown region
because they are not geometrically connected with the seed point.
fat, and vascular tree are ruled out. Also, internal and pleural
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nodules are not included at this stage because they do not
satisfy the MTT inclusion rule. On the other side, not only
the nodules but also the vascular tree inside the lung must be
included in the parenchymal volume, because there may be
some nodules attached to its external walls. To this purpose,
the contour of the lung must be outlined and all voxels inside
this contour must be considered.

IV.B. 2D anatomic lung contour detection: The GEB
algorithm

The anatomic lung contour selection is implemented
slice-wise; after that, all pixels inside the 2D contours will be
combined together to obtain the 3D segmented volume. Fig-
ure 5�a� shows an example of segmented lung slice, as ob-
tained with the RG, together with the contour of the lung
section. As one can see, the lung slice includes a pleural
nodule, marked by the black circle, that is ruled out by the
contour. To avoid this drawback one might think of applying

FIG. 4. An example of one slice of the internal lung volume obtained after
the first step of our CAD. It should be stressed that the presence of a pleural
nodule has not been included in the segmented region.

FIG. 5. �a� The 2D lung contour obtained after the segmentation with the
RG: the pleural nodule, marked by a circle, is ruled out; this contour is the
initial position of the spline in the GEB dynamics and corresponds to the
case q= +�; �b� the 2D lung contour obtained with a CH: the pleural nodule
is included in the contour but the right part of the lung is roughly approxi-
mated by a straight line; this contour is also obtained by the GEB dynamics
for q=0; �c� the 2D lung contour obtained by the GEB with a suboptimal
value of the parameter q; �d� the 2D lung contour obtained by the GEB with

the best value of q.
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a convex hull �CH� algorithm, which is the intersection of all
convex regions containing a given object. The result of such
application is shown in Fig. 5�b�: the pleural nodule is cor-
rectly included in the contour but other concave structures,
such as the section of the vascular tree near the lung hilum,
are roughly approximated by a straight line.

Other approaches can be followed for the detection of the
pleural nodules, as comparing the curvatures at points on the
lung border:20 a rapid change in curvature indicated a nodule,
large vessel, or bronchus that formed an acute or obtuse
angle with the lung border, and the lung border was then
corrected by means of insertion of a border segment.

We have developed a new kind of ACM algorithm, called
glued elastic band �GEB�,13 that simulates the dynamics of a
spline glued to the nodes along the contour. The algorithm
implements a sort of local CH, able to include concave parts
with little bending radius, such as pleural nodules, and to
rule out concave parts with great bending radius, such as the
section of the vascular tree near the lung hilum. The algo-
rithm relies on one parameter, q, that can be considered as
the quantity of glue. The results are shown in Figs. 5�c� and
5�d�: in particular, Fig. 5�c� shows the results obtained with a
nonoptimal value of q, while Fig. 5�d� shows the lung con-
tour obtained with the optimal quantity of glue. As one can
see, the spline has reached an equilibrium position that in-
cludes concave parts with little bending radius as pleural
nodules, while concave parts with great bending radius, as
the section of the vascular tree near the lung hilum, are ruled
out.

The RG segmentation is a necessary step to properly ini-
tialize the GEB spline in an automatic way. The initial posi-
tion of the spline corresponds to the 2D contour obtained
after the RG segmentation: each pixel of the 2D contour is a
node of the spline; otherwise, the initial position of the spline
should be set manually. The dynamics of the spline is driven
by the following forces:

�1� Constant internal forces where the nodes exchange one
another with the nearest neighbors �the previous and the
following along the spline�.

�2� Constant adhesive forces acting toward the inside of the
object when the nodes are in contact with the section
contour of the object, as if there was some glue on the
spline.

�3� The constraint reactions acting when the nodes are
pushed inside the contour.

In detail, let us consider the constant internal forces F� i+1 and
F� i−1 acting on node i due to the neighboring nodes i+1, i
−1; if a Cartesian system is considered with origin on the
node i and axis versors u�x and u�y, we have

� F� i−1 = cos �i−1u�x + sin �i−1u�y

F� i+1 = cos �i+1u�x + sin �i+1u�y ,
� �1�

where the angles �i−1 and �i+1 define the directions of the

neighboring nodes with respect to node i. The resultant in-
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ternal force on node i has the following intensity and orien-
tation:

	Ri	 = 
�cos �i−1 + cos �i+1�2 + �sin �i−1 + sin �i+1�2, �2�

tan �Ri
=

sin �i−1 + sin �i+1

cos �i−1 + cos �i+1
. �3�

The adhesive force F� a due to the glue is assumed to have the
same direction as R� i, versor pointing always toward the in-
side of the contour, and constant strength 	Fa	. If the sum
F� toti

=R� i+F� a points toward the outside �R� i and F� a have oppo-
site versor, with 	R� i	� 	F� a	�, node i detaches from the con-
tour. If F� toti

points toward the inside �R� i and F� a have the
same versor�, then a constraint reaction N� i �equal strength
and direction of F� toti

, opposite versor� forbids node i to move
inside the contour: as a result the node remains glued to the
contour. Figure 6 provides a pictorial explanation of this dy-
namics: for nodes on concave parts of the contour with great
bending radius, as node number 1, the sum of the internal
forces, due to nearest neighbors, is smaller than the adhesive
force due to the glue; hence, such nodes remain glued to the
contour: this is the typical case of nodes near the lung hilum.
On the other side, for nodes on concave parts of the contour
with little bending radius, as node number 2, the sum of the
internal forces is strong enough to exceed the adhesive forces
of the glue; the effect is that the spline is pulled out and the
concave part is included inside the spline: this is the typical

FIG. 6. A pictorial explanation of the GEB dynamics: node number 1 is on
a concave part of the contour with great bending radius where the sum of the
internal forces, due to nearest neighbors, is smaller than the adhesive force
due to the glue; hence, such node remains glued to the contour: this is the
typical case of the nodes near the lung hilum. Node number 2 is on a
concave part of the contour with little bending radius where the sum of the
internal forces is strong enough to exceed the adhesive forces; the effect is
that the spline is pulled out and the concave part is included inside the
spline: this is the typical case of the pleural nodules. For node number 3 the
sum of the internal forces points toward the inside of the region: such node
feels a constant reaction as for an object on a plane; the effect is that this
node does not move. This dynamic is applied to all nodes of the spline.
case of the pleural nodules. Finally, for node number 3 the
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sum of the internal forces points toward the inside of the
region: such node feels a constant reaction as for an object
on a plane; the effect is that this node does not move. This
dynamics is applied to all nodes of the spline.

The only parameter of the GEB is quantity of glue that is
given by the ratio between adhesive and internal forces,

q =
Fa

F
. �4�

It is interesting to note that in the limit q= +�, the internal
forces are irrelevant with respect to the adhesive forces, and
the spline remains perfectly glued to the 2D contour: this
case corresponds to the initial position of the spline �Fig.
5�a��. On the other side, for q=0, the adhesive force is zero
and the result is the same as a CH �Fig. 5�b��. Between these
two cases, one can have intermediate values implementing a
local CH with different results: the higher the q, the greater
the bending radius of the concave parts that are ruled out.
The parameter q is set slice-wise by varying its value until
the following condition holds:

Ai

Af
= a , �5�

where Ai and Af are, respectively, the initial and the final area
inside the 2D contours. The parameter a has been optimized
in order to maximize the number of the nodules included in
the contour and minimize the segmented volume. This opti-
mization has been carried out on one clinical CT containing
many pathological structures of different types and sizes.
Then, its value is the same for all 15 test CTs. However
changes of a in the neighborhood of the best value do not
affect in a substantial way both the number of detected nod-
ules and the volume of the segmented region, thus suggest-
ing that the method is stable.

All voxels inside the final position of the spline are con-
sidered �see Fig. 2�d�� and, combining together the regions
inside the 2D contours of each slice, we obtain the 3D seg-
mented volume which contains bronchial and vascular trees
inside the lung, trachea, internal, and pleural nodules. Nod-
ules will be searched inside this working volume. Figure 7
shows two 3D images obtained as a result of the segmenta-
tion step. The volume thus segmented is reduced to about
15% of the total volume of the original CT scan, and about

FIG. 7. 3D images obtained as a result of the segmentation step. The seg-
mented volume is reduced to about 15% of the total volume of the original
CT scan, and about 25% of the chest volume.
25% of the chest volume, and no nodule is missed.
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V. NODULE CANDIDATE DETECTION

The second step of the CAD system consists of detecting
the candidate nodules inside the working volume. This is
implemented by a RG algorithm with an inclusion rule given
by the AND combination of MBT and SBT rules. The thresh-
olds are chosen in order to maximize the detection rate �or
sensitivity, or efficiency� defined as the fraction of selected
nodules with respect to the total number of nodules diag-
nosed by the radiologist. This optimization is carried out on
the above-mentioned clinical CT. The seed points are
searched automatically as follows: the segmented volume is
scanned until a voxel satisfying the inclusion rule is found;
this voxel is used as seed point and the growth is started.
Once the region is completely grown, it is removed from the
CT and stored for further analysis. Then, the search for new
seed points is restarted. The routine is iterated until no more
seed points satisfying the inclusion rule are found. Some
examples of the structures found by the CAD system are
shown in Fig. 8. To assess the efficiency of this step, we
define as true positives �TPs� the candidate nodules that meet
the radiologists’ diagnosis according to the following condi-
tion:

�	Xrad − X	 � Rrad

	Yrad − Y	 � Rrad

	Zrad − Z	 � Rrad
� ,

where �Xrad ,Yrad ,Zrad� ,Rrad� are the center coordinates and
the radius of the radiologists’ drawn circle, and �X ,Y ,Z� ,R�
are the same quantities of the CAD candidate nodule. All
other candidates are considered as false positives �FPs�.

With the above-mentioned definitions, the efficiency of
the nodule hunter on 15 CTs containing 26 nodules �15 in-
ternal and 11 pleural� is 88.5% �23 /26�, with about 2775
FPs/CT.

VI. FP REDUCTION

Almost all FP findings refer to candidates with too many
or too few voxels, and can be easily ruled out by a simple

FIG. 8. Examples of the structures found by the CAD system: part of the
vascular tree �left� and nodules �right�.
double-threshold cut on the volume V �expressed in number
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of voxels�. As mentioned in Sec. II, the structures diagnosed
by the radiologists of the ITALUNG-CT trial have diameters
of about 5�d�14 mm, corresponding to volumes
V� �30, 800�, expressed in terms of voxels. Hence, we ex-
ploit this prior information to rule out all findings with vol-
ume out of this range, thus reducing the false positives ob-
tained by the nodule hunter. As a result of this volume filter
the efficiency is preserved �88.5%�, while FPs are reduced to
722 corresponding to 48.1 FPs/CT. It should be stressed that
the values of the thresholds arise from the diagnosing setting
of the ITALUNG-CT trial and do not rely on the structures
found by the nodule hunter. Moreover, the stability of the
CAD performance has been checked for different values of
the thresholds in proximity of the above-mentioned values �
Vmin=30 and Vmax=800�. Consequently, the results we will
report in the following are the same for different thresholds
close to the reported values.

A further reduction of the FPs can be obtained by means
of a classification step carried out by a supervised two-
layered �three inputs, seven hidden neurons, and one output�
feed-forward neural network, trained with gradient descent
learning rule21 �learning rate: 	=0.01� with momentum22

�momentum term: 
=0.9�, and sigmoid transfer function
�gain factor �=1�. These parameters have been set in order
to obtain the best classification performance in term of area
under the ROC curve �AUC�. The input features are as fol-
lows:

�1� Volume, V.
�2� Roundness, R=V /VS, where VS is the volume of the

smallest sphere containing the segmented region.
�3� Radius r, defined as the mean distance between the nod-

ule center and the contour points.

The leave-one-nodule-out cross validation23 is used to ex-
ploit the highest possible number of TPs during the training
phase. The name of this strategy refers to the fact that one TP
patterns is, in turn, left out and used for validating the net-
work while the other ones are used for the training. As far as
the FPs are concerned, a subset of proper size must be se-
lected to suitably train the network. After different trial-and-
error approaches, we use all 23 TPs and 69 FPs for the train-
ing phase and we proceed as follows:

• The 69 FPs are extracted with a probability given by the
distribution of all 722 FPs, in space spanned by the
above-mentioned features �volume, roundness, radius�;
in this way we are sure that the FP patterns used for
training the network are representative of all FPs.

• The patterns �23 TPs+69 FPs� are randomly divided
into 23 sets, each one with 1 TP and 3 FPs.

• Twenty-two out of 23 sets are put together for training
the network, while the last one is used for validation: in
this way a neural output is assigned to each pattern of
the validation set.

• A cyclical permutation of the sets is carried out: for
each permutation the network is trained with 22 sets
and validated on one set; in this way a neural output is

assigned to all patterns.
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• The remaining 653 FPs, not selected for the cross vali-
dation, are divided into 23 subsets; each subset is clas-
sified by one of the 23 networks.

As a consequence of this routine, a neural output is assigned
to all 23 TPs and 722 FPs and used to draw the ROC and
FROC curves.

A quite similar cross-validation approach can be adopted:
the leave-one-CT-out, instead of the leave-one-nodule-out.
The former is suitable when texture-based features are used
for characterizing the nodules: in this case, the similar tex-
ture of a CT might cause a bias if nodules from the same CT
are partly in the training set, partly in the validation one. This
is not the case in our processing, for which the latter ap-
proach is the best one, due to the fact that it exploits the
greatest possible number of TP patterns for the training
phase, without introducing any bias.

The neural outputs give rise to a two-class distribution in
the range �0,1�, with target t=1 for TPs, t=0 for FPs. Given
the neural distributions, the ROC curve is drawn as follows:

�1� A decision threshold k� �0,1� is fixed such that the ef-
ficiency is defined as the number of TPs with neural
output greater than k; the specificity is the number of
FPs with neural outputs lower than k; the FP rate is
given by 1-specificity. In this way a fixed value of k
defines a point �efficiency; FP rate� in the ROC plane.

�2� The threshold is shifted in the �0,1� interval with step
0.01, such that 101 points are obtained.

�3� The ROC curve is the set of such points; for a better
visual impact and for the computation of the area under
the curve, a solid line joining the points is drawn.

The same procedure is carried out to draw the FROC curve
with the following differences:

• The efficiency �or sensitivity� is computed with respect
to the radiologists’ drawn circles �diagnosis�, thus hav-
ing a maximum possible value given by the efficiency
of the nodule hunter.

• The number of FPs per CT is reported on x axis instead
of the FP rate.

• Differently from the ROC curve, the FROC curve is
displayed without joining the points: in such a way one
can focus on a particular working point �efficiency; FP/
CT� and compare the performance with other CADs.

VII. RESULTS AND COMMENTS

Figure 9 displays the ROC curve24 assessing the neural
network capability in classifying the nodule candidates. The
AUC is Az=0.969±0.027, where the error is computed as
reported in Ref. 25. Figure 10 shows the FROC curve which
provides the performance of the overall CAD system in de-
tecting the nodule, thus valuating also the effectiveness of
the lung volume segmentation, the nodule candidate search-
ing, and the FP reduction mechanism. As one can see from
Fig. 10 the use of the neural network allows reduction of the

number of FPs/CT from 48.1 to 6.6 without reducing the
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overall efficiency �88.5% as obtained after the double-
threshold cut�. A further reduction to 2.47 FPs/CT can be
obtained at a lower detection rate �80%�.

A summary of the results achieved by other CADs is re-
ported in Table I. A direct comparison is unfeasible, due to
the following reasons:

�1� The databases differ for the number of CT scans, the
number of slices per CT, and the dose of the images �in
some cases this information is missing�.

�2� The starting points of the processing systems are differ-
ent: our CAD processes the whole CT and automatically
extracts the slices to analyze; the other CADs rely on a
manual selection of the sectional images.

�3� The results are provided in different ways: in particular,
FPs are given per slice or per CT �it should be stressed
that, in general, FPs/CT is different from FPs/slice mul-
tiplied by the number of slices/CT�.

FIG. 9. Neural network ROC curve reporting the sensitivity �fraction of
positive nodule candidates correctly classified� against the FP rate �fraction
of FP nodule candidates classified as positive�, at different values of the
decision threshold on the neural network output.

FIG. 10. Overall CAD FROC curve reporting the sensitivity, evaluated with

respect to the radiologists’ diagnosis, against the FPs/CT.
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�4� Some CADs focus their analysis on the dimension of the
nodules, thus providing detection rates at different nod-
ule sizes.

Some considerations can be outlined. Though our CT data-
base is smaller than the other ones �except the case of Ref.
4�, the number of analyzed sectional images is the greatest
one, due to the fact that the whole CTs are processed, with no
need for a manual selection of the slices. This fact represents
one of the main contributions of the proposed CAD and is of
great importance in view of developing a prototype CAD
system that can be used in a clinical routine directly by the
radiologists of the hospitals belonging to the MAGIC-V Col-
laboration. Despite the almost completely automated com-
puting chain, we obtain good values of both efficiency and
FPs/CT.

VIII. CONCLUSIONS

The nodule detection in lung CT scans is a hard task due
to the fact that a sequence of slices must be analyzed. From
this point of view, the CAD systems can be a useful tool to
help the radiologists for lung cancer diagnosis. We have de-
veloped a CAD system which consists of three steps: �1�
segmentation of the lung parenchymal volume and inclusion
of the pleural nodules; �2� nodule candidate detection; �3� FP
reduction. The techniques of the image analysis used to
implement the first two steps of the CAD system are the
region growing, for lung segmentation and nodule searching,
and a new active contour model, implementing a sort of local
convex hull for the inclusion of the pleural nodules. The FP
reduction is obtained by means of double-threshold cut and a
neural network classifier. The parameters of the CAD have
been set on a clinical CT containing many pathological struc-
tures of different types and sizes. The system has been evalu-
ated on a database of 15 CT scans with 26 nodules: 15 in-
ternal and 11 pleural. A detection rate of 88.5% is achieved
with 6.6 FPs/CT, or 80% with 2.47. The almost complete
automatization of our CAD suggests that it can be used as a
valuable support to the radiologists for the diagnosis of lung
nodules in low-dose CT scans.
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